Teledyne M5000B operating instructions Digital Filter Setup, Setting 90% Response time seconds

Page 39

Photometric Analyzer

Operation /Control Unit 3

 

 

 

 

 

 

 

 

 

Themanualmodeonlyrequiresenteringthevaluesforeachcorrection point into the microprocessor via the front panel buttons. Again, the number of points required is determined by the user.

3.3.7Digital Filter Setup

The 5000BF has the option of decreasing or increasing the amount filtering on the signal. This feature enhances the basic filtering done by the analog circuits by setting the amount of digital filtering effected by the microprocessing. To access the digital filter setup, you must:

1.Press the System key to start the System function

DIG_FILT SELF-TEST

PWD LOGOUT MORE

2.DIG_FILT will flash, press the ENTER key,

Weight of digital

Filter: 9

3.The number on the second row will flash and can be set by using the Up or Down arrow keys.

The settings go from zero, no digital filtering, to 10, maximum digital filtering. The default setting is 8 and that should suffice for most applica- tions. In some applications where speeding the response time with some trade off in noise is of value, the operator could decrease the number of the digital filter. In applications where the signal is noisy, the operator could switch to a higher number; the response time is slowed down though.

90% response time on the different settings to a step input is shown below. This response time does not include the contributions of the bench sampling system and the preamplifier near the detector.

Setting 90% Response time (seconds)

04.5

14.5

25.0

35.0

45.5

57.0

Teledyne Analytical Instruments

Part I 3-11

Image 39
Contents Teledyne Analytical Instruments Photometric AnalyzerCopyright 1999 Teledyne Analytical Instruments Model 5000BIii Table of ContentsModel 5000B Teledyne Analytical Instruments Part I Control Unit Part IInstallation Ii PartOperation Maintenance Model 5000B Photometric Analyzer Iv PartOverview Typical ApplicationsPhotometric Analyzer Part I Control Unit Introduction Model 5000B Other NIR Absorbers that can be measured consult factory Introduction Model 5000B Main Features of the Analyzer 1 UP/DOWN Switch ESCAPE/ENTER SwitchOperator Interface Model 5000B Controls, Indicators, and Connectors Control Section Interface Panel Model 5000B Interface Panel Introduction Model 5000B Unpacking the Control/Analysis Unit InstallationPart 115VAC Primary Input Power ConnectionsAnalog Output Connections ExamplesRange Voltage Current mA Alarm RelaysTypes of Relay Contacts The connectors are Part I RS-232 Sig RS-232 Pin Purpose RS-232 SignalsTesting the System Command DescriptionParameter Setting Part Photometric Analyzer Operation /Control Unit OperationOperation/Control Unit Hierarchy of System Functions and Subfunctions System Function Setting up an AUTO-CALSelect More and press the Enter Key Entering the Password PasswordProtectionInstalling or Changing the Password Logging Out System Self-Diagnostic Test CheckingLinearitywithALGORITHM Model ScreenSetting 90% Response time seconds Digital Filter SetupFilter or Solenoid Setup Calibration/Hold Timer Setup Hold/Track SetupAnalog 4 to 20 mA Output Calibration Calbrt hold 3 min Sample hold 1 minModel Use UP/DOWN arrow to Adjust 4 ma 250Auto Mode Zeroing Show NegativeZero Cal Manual Mode Zeroing Sccm Cell FailureAuto Mode Spanning Manual Mode SpanningSpan Cal Offset Function How to access the offset functionZero off 0.0 ppm ENT to begin Zero Select zero mode Auto Select zero mode MANAlarms Function AL1 1ØØØ ppm HI DftN FsN LtchN Manual Select/Define Range Screen Range Select FunctionAuto Screen Precautions 2illustratestheseschemesgraphically Analyze Function Set Range Screen Algorithm Application More Curve Algorithm Screen Auto Mode Linearization Part I Control Unit/Analysis Unit Maintenance Fuse ReplacementAnalog System Self Diagnostic TestMaintenance Model 5000B Photometric Analyzer PowerCell detector PreampPart Part II Analysis Unit Part IIRoutine Maintenance Part II Analysis Unit Appendix Iv Part Operations/Analysis Unit Explosion-ProofVersionControlModule Control FunctionsAnalyzers not equipped with Auto Zero Control SettingsStart-p PreliminaryInspectionPre-Start-upElectricalCheckout Power On ObservationsTeledyneAnalyticalInstruments4-5 Procedure CalibrationStandardizationFluids TeledyneAnalyticalInstruments4-7 Operations/Analysis Unit TeledyneAnalyticalInstruments4-9 Operations/Analysis Unit TeledyneAnalyticalInstruments4-11 Operations/Analysis Unit TeledyneAnalyticalInstruments4-13 Ppm simulated water using Sample Span ZeroAttachment 5000B/5020 NIR Analyzer Operations/Analysis Unit Operational Theory Contd Source Module Sample cell OpticalSystemAnalyzerSystem-BlockDiagram Power Module Block Diagram Detectorcompartment Automatic operation and routine operational duties Routine MaintenancePart II Maintenance/Analysis Unit System Visual Check and Response ProcedureDaily Suggested Preventive Maintenance ScheduleEquipment Required Oscilloscope Display of the I to E Converter Output Part II Maintenance/Analysis Unit Inverting Amplifier Setup of the Logarithmic AmplifierInterface Board Terminals Strip Battery-Powered Oscilloscope Synchronization PointPart Part II Maintenance/Analysis Unit Part Specifications Operating Temperature 0-50oCPhotometric Analyzer, 5000B Appendix Appendix Models 5000B Other Features QtyP/NDescription Recommended 2-Year Spare Parts ListDrawing List, 5000B Appendix Models 5000B Teledyne Analytical Instruments