BASIC OPERATION AND FEATURES
SX TRANSISTOR CONTROL | Page 5 |
following description provides a brief introduction to examples of some of these features.
Section 1. 2 Solid-State Reversing
The direction of armature rotation on a shunt motor is determined by the direction in which current flows through the field windings. Because of the of the shunt motor field only typically requires about 10% of the armature current at full torque, it is normally cost effective to replace the
armature, the motor performance curve can be maximized through proper control application.
Section 1. 4 More Features with Fewer Components
Field weakening with a series wound motor is accomplished by placing a resistor in parallel with the field winding of the motor. Bypassing some of the current flowing in the field into the resistor causes the field current to be less, or weakened. With the field weakened, the motor speed will increase, giving the effect of “overdrive”. To change the “overdrive speed”, it is necessary to change
LINE POS
FUSE
CAP | Q2 |
A1 +
ARM A2 -
Q1
Q3
F1
Q4
Q5
F2
Q6
the resistor value. In a separately excited motor, independent control of the field current provides for infinite adjustments of “overdrive” levels, between motor base speed and maximum weak field. The desirability of this feature is enhanced by the elimination of the contactor and resistor required for field weakening with a series motor.
With a separately excited motor, overhauling speed limit, or downhill speed, will also be more constant. By its nature, the shunt motor will try to maintain a constant speed downhill. This characteristic can be enhanced by increasing the field strength with the control. Overhauling load control works in just the opposite way of field weakening, armature rotation
NEG
Figure 4
By energizing the transistors in pairs, current can be made to flow in either direction in the field. The armature control circuit typically operates at 12KHZ to 15KHZ, a frequency range normally above human hearing. This high frequency coupled with the elimination of directional contactors, provides very quiet vehicle operation. The field control circuits typically operate at 2 KHZ.
The line contactor is normally the only contactor required for the shunt motor traction circuit. This contactor is used for both
Section 1. 3 Flexible System Application
Because the shunt motor controller has the ability to control both the armature and field circuits independently, the system can normally be adjusted for maximum system efficiencies at certain operating parameters. Generally speaking, with the ability of independent field and
slows with the increase of current in the field.
Regenerative braking (braking energy returned to the battery) may be accomplished completely with
For GE, the future is now as we make available a new generation of electric traction motor systems for electric vehicles having separately excited DC shunt motors and controls. Features that were once thought to be only available on future AC or brushless DC technology vehicles systems are now achievable and affordable.
January 2000