Cisco Systems 30 VIP manual Tracyclose mod port tracystart mod port

Page 45

Cisco IP Telephony Troubleshooting Guide for Cisco CallManager Release 3.0(1)

00:00:22:480 (CFG) DHCP Timeout Waiting on Server, DHCPState = INIT 00:00:38:480 (CFG) DHCP Timeout Waiting on Server, DHCPState = INIT

If the above timeout message continues to scroll by, then there is a problem contacting the DHCP server. First thing to check is that the Catalyst 6000 gateway port is in the correct VLAN. This information is in the ‘ sh port’ command from before. If the DHCP server is not on the same VLAN as the Catalyst 6000 gateway, then make sure the appropriate IP Helper addresses have been configured to forward the DHCP requests to the DHCP server. It is possible for the gateway to get stuck in the INIT state after a VLAN number change until the gateway resets. When in this state, it would not hurt to try resetting the gateway. Every time the 860 gets reset, your tracy session will be lost, so you must close your existing session and re-establish a new one by issuing the following commands:

tracy_close mod port tracy_start mod port

If all this checks out and you're still seeing the DHCPState = INIT messages, then check to see if the DHCP server is functioning correctly. If so, start a sniffer trace to see if the requests are being sent and if the server is responding or not.

Once DHCP is working correctly, the gateway will have an IP address that will allow the use of the tracy debugging utility. This utility is a built-in feature of the NMP command set for the Catalyst gateways, and available as a helper application that runs on Windows 98/NT/2000 for the standalone gateways. To use the helper application tracy utility, you need to "Connect" to the gateway by using the IP address to which it is assigned. This tracy application works on all the gateways, provides a separate trace window for each gateway (up to eight may be traced at once), and allows traces to be logged directly to a file you specify.

The next step is to verify that the TFTP server IP address was correctly provided to the gateway. This is normally provided by DHCP in either Option 66 (by name or IP address), Option 150 (IP address only), or si_addr (IP address only). If your server has multiple Options configured, si_addr will take precedence over Option 150, which will take precedence over Option 66. If Option 66 provides the DNS_NAME of the TFTP server, then the DNS server(s) IP address(es) must have been specified by DHCP, and the name entered in Option 66 must resolve to the correct TFTP server IP address. A Catalyst gateway could be configured by the NMP to disable DHCP, and the NMP operator must then enter all configuration parameters by hand at the console, including the TFTP server address.

Additionally, the gateways will always attempt to resolve the name "CiscoCM1" via DNS. If successful, the CiscoCM1 IP address will take precedence over anything the DHCP server or NMP tells it for the TFTP server address, even if the NMP has DHCP disabled.

You can check the current TFTP server IP address in a gateway by using the tracy utility. Enter the following command to get the configuration task number:

TaskID: 0

Cmd: show tl

© 2000 Cisco Systems, Inc.

45

Image 45
Contents SDI Trace Output Configuring Traces Reorder Tone Through Gateways Gateway Registration Problems Page Purpose Documentation Checklist Channel Calling Search Space CCAPi Acronym/Term Cnf Law mu-lawCisco IOS Cluster Codec ChannelFlow Full duplex 711 729 225 245 323 Half Duplex Hookflash Jitter Law mu-lawPartition 931 Route Filter Route Group Route List Route PatternSilence Suppression Voice Activation Detection Voice Activation Detection Silence Suppression VoIP Translation PatternCisco CallManager Administration Details View Report Microsoft PerformanceMicrosoft Event Viewer SDI Trace Configuring Traces SDL Trace Page SDLTraceDataFlag Value SDLTraceTypeFlag Value DefinitionCall Detail Records CDR and Call Management Records CMR Sniffer TraceSelect Service Service Parameters CDRs Voice Quality Problem CategoriesPage Packet Number Time absolute ms Time delta ms Button Help John Check Your Loads Phone Resets Dropped Calls Page Page Cisco CallManager Feature Issues Locations Conf Bridge Region1 Region2 MTP Resource Problems MTP Dial Plans Dialing DOES-NOT-EXIST Page DialPlanWizardG Clause NamePattern Device Name Device Description Usage Pattern PartitionReorder Tone Through Gateways Slow Server ResponseGateway Registration Problems Module.port CFG Booting Dhcp for dynamic configurationTracyclose mod port tracystart mod port TaskID Cmd show dhcp Gmsg ***TFTP Error File Not Found Gmsg CCM#0 CPEvent = Loadid -- CPState = LoadResponse Gatekeeper ProblemsRegistration Rejects RRJ Cisco IP Phone Initialization Process Sample TopologyPage Skinny Station Registration Process Message Description Station Register Station ResetStation IP Port AcknowledgePage Cisco CallManager Initialization Process Self-Starting Processes Cisco CallManager Registration Process Cisco CallManager KeepAlive Process Cisco CallManager Intra-Cluster Call Flow Traces Cisco Systems, Inc CCMStationD stationOutputStopTone tcpHandle=0x4fbbc30 Cisco Systems, Inc Call Flow Traces Page Cisco Systems, Inc Following debug messages show that the call is in progress Gatekeeper Endpoint Registration Debug Messages and Show Commands on the Cisco IOS GatewayCisco Systems, Inc Page Cisco IOS Gateway with T1/PRI Interface Cisco IOS Gateway with T1/CAS Interface Cisco Systems, Inc Inter-Cluster H.323 Communication Call Flow Traces Failed Call Flow Cisco Systems, Inc Reading Records Writing RecordsRemoving Records Table SchemaFields in a Call Detail Record Known IssuesDeciphering the Time Stamp Origination leg call identifier Global Call IdentifierDate/time of call origination Originator’s node IDCalling party cause Of call termination Isdn location valueIP address for the originator’s media connection Port for the originator’s media connectionIP address to which the call was delivered unsigned integer Destination span or portIP port to which the call was delivered Called party’s partitionCodec type used by the destination on sending side IP address for the destination outgoing media connectionDate/time of connect Date/time of disconnect unsigned integerCisco CallManager node identifier Global Call Identifier for this callCall Identifier Directory number used on this callLost RTP packets during this connection Interarrival jitter during this connectionLatency experienced during this connection Normal Calls Cisco IP Phone-to-Cisco IP Phone Call Management Records Logged By Call Type Codec Cause Codes Description Codec Types Compression / Payload typesNumber changed Alarms Calling Cisco Technical Assistance Center TAC Index Debug messages and show commands Page Topology

30 VIP specifications

Cisco Systems has been a leading company in networking technology, and its suite of products is continually evolving to meet the demands of modern digital infrastructure. One of the latest introductions is the Cisco Systems 30 VIP, a highly advanced solution designed to enhance network performance and security for businesses of all sizes.

The Cisco Systems 30 VIP stands as a cornerstone for next-generation networking features, providing organizations with significant advantages in speed, reliability, and scalability. At the heart of the 30 VIP are key technologies such as advanced routing protocols and enhanced security measures that ensure seamless data transfer across multiple devices.

Main features of the Cisco Systems 30 VIP include its high throughput capabilities, which support accelerated data processing and lower latency. This is crucial for businesses that rely on real-time data exchange and cloud applications. Additionally, the device incorporates Multi-Protocol Label Switching (MPLS) technology, which optimizes data flow between networks and significantly enhances overall performance.

Another notable characteristic of the 30 VIP is its integrated security features, including advanced threat detection and prevention systems. These are designed to protect sensitive business data from cyber threats, ensuring operational continuity and compliance with industry regulations. The Cisco 30 VIP also supports secure access protocols, allowing for secure remote connections, which is increasingly vital in today’s hybrid work environment.

The adaptability of the Cisco Systems 30 VIP is another of its standout aspects. It offers compatibility with existing Cisco infrastructure, making it easier for businesses to adopt new technologies without overhauling their entire system. This modular approach allows for easy upgrades and integration of future technologies, ensuring long-term viability and investment protection.

Furthermore, the Cisco Systems 30 VIP is powered by intelligent network management software that simplifies monitoring, configuration, and troubleshooting processes. This software enhances network visibility, allowing administrators to identify and address potential issues proactively, thereby reducing downtime and enhancing user experience.

In summary, the Cisco Systems 30 VIP represents a significant advancement in network technology with its high throughput, integrated security features, adaptability, and intelligent management capabilities. These elements combine to provide a robust solution that meets the evolving needs of modern businesses while ensuring secure and efficient operations. As organizations continue to navigate an increasingly complex digital landscape, the Cisco Systems 30 VIP offers a future-proof option designed to facilitate growth and resilience.