Cisco Systems 30 VIP manual Lost RTP packets during this connection

Page 86

Cisco IP Telephony Troubleshooting Guide for Cisco CallManager Release 3.0(1)

Field Definitions

numberOctetsReceived

numberPacketsLost

jitter

latency

Call Records Logged By Call Type

The number of octets (bytes) of data received during this call

The total number of payload octets (that is, not including header or padding) received in RTP data packets by the device since starting reception on this connection. The count includes packets received from different sources, if this is a multicast call. The value is zero if the connection was set in “send only” mode.

Lost RTP packets during this connection

The total number of RTP data packets that have been lost since the beginning of reception. This number is defined as the number of packets expected less the number of packets actually received, where the number of packets received includes any that are late or duplicates. Thus, packets that arrive late are not counted as lost, and the loss may be negative if there are duplicates. The number of packets expected is defined to be the extended last sequence number received, as defined next, less the initial sequence number received. The value is zero if the connection was set in “send only” mode. (For details, see RFC 1889)

The interarrival jitter during this connection

An estimate of the statistical variance of the RTP data packet interarrival time, measured in milliseconds and expressed as an unsigned integer. The interarrival jitter J is defined to be the mean deviation (smoothed absolute value) of the difference D in packet spacing at the receiver compared to the sender for a pair of packets. Detailed computation algorithms are found in RFC 1889. The value is zero if the connection was set in “send only” mode.

The latency experienced during this connection

The value is an estimate of the network latency, expressed in milliseconds. This is the average value of the difference between the NTP timestamp indicated by the senders of the RTCP messages and the NTP timestamp of the receivers, measured when these messages are received. The average is obtained by summing all the estimates, then dividing by the number of RTCP messages that have been received. (For details see RFC 1889)

Each normal call between two parties logs one CDR End Call record. Each End Call record contains all fields identified above, but some fields may not be used. If a field is not used, it will be blank if it is an ASCII string field, or “0” if it is a numeric field. When supplementary services are involved in a call, more End Call records may be written.

In addition to the CDR End Call record, there may be up to one CMR record per endpoint involved in a call. In a normal call between two parties each using a Cisco IP Phone, there will be two CMR records written: one for the originator, and one for the destination of the call. This section describes the records written for different call types in the system.

© 2000 Cisco Systems, Inc.

86

Image 86
Contents SDI Trace Output Configuring Traces Reorder Tone Through Gateways Gateway Registration Problems Page Purpose Documentation Checklist Cisco IOS Cluster Acronym/Term Cnf Law mu-lawChannel Calling Search Space CCAPi Codec ChannelPartition Flow Full duplex 711 729 225 245 323 Half Duplex HookflashJitter Law mu-law Silence Suppression Voice Activation Detection 931Route Filter Route Group Route List Route Pattern Translation Pattern Voice Activation Detection Silence Suppression VoIPCisco CallManager Administration Details Microsoft Performance View ReportMicrosoft Event Viewer SDI Trace Configuring Traces SDL Trace Page SDLTraceTypeFlag Value Definition SDLTraceDataFlag ValueSniffer Trace Call Detail Records CDR and Call Management Records CMRSelect Service Service Parameters CDRs Problem Categories Voice QualityPage Packet Number Time absolute ms Time delta ms Button Help John Check Your Loads Phone Resets Dropped Calls Page Page Cisco CallManager Feature Issues Locations Conf Bridge Region1 Region2 MTP Resource Problems MTP Dial Plans Dialing DOES-NOT-EXIST Page Name DialPlanWizardG ClausePattern Partition Pattern Device Name Device Description UsageSlow Server Response Reorder Tone Through GatewaysGateway Registration Problems CFG Booting Dhcp for dynamic configuration Module.portTracyclose mod port tracystart mod port TaskID Cmd show dhcp Gmsg ***TFTP Error File Not Found Gatekeeper Problems Gmsg CCM#0 CPEvent = Loadid -- CPState = LoadResponseRegistration Rejects RRJ Sample Topology Cisco IP Phone Initialization ProcessPage Skinny Station Registration Process Station IP Port Station ResetMessage Description Station Register AcknowledgePage Cisco CallManager Initialization Process Self-Starting Processes Cisco CallManager Registration Process Cisco CallManager KeepAlive Process Cisco CallManager Intra-Cluster Call Flow Traces Cisco Systems, Inc CCMStationD stationOutputStopTone tcpHandle=0x4fbbc30 Cisco Systems, Inc Call Flow Traces Page Cisco Systems, Inc Following debug messages show that the call is in progress Debug Messages and Show Commands on the Cisco IOS Gateway Gatekeeper Endpoint RegistrationCisco Systems, Inc Page Cisco IOS Gateway with T1/PRI Interface Cisco IOS Gateway with T1/CAS Interface Cisco Systems, Inc Inter-Cluster H.323 Communication Call Flow Traces Failed Call Flow Cisco Systems, Inc Writing Records Reading RecordsTable Schema Removing RecordsKnown Issues Fields in a Call Detail RecordDeciphering the Time Stamp Date/time of call origination Global Call IdentifierOrigination leg call identifier Originator’s node IDIP address for the originator’s media connection Isdn location valueCalling party cause Of call termination Port for the originator’s media connectionIP port to which the call was delivered Destination span or portIP address to which the call was delivered unsigned integer Called party’s partitionDate/time of connect IP address for the destination outgoing media connectionCodec type used by the destination on sending side Date/time of disconnect unsigned integerCall Identifier Global Call Identifier for this callCisco CallManager node identifier Directory number used on this callLatency experienced during this connection Lost RTP packets during this connectionInterarrival jitter during this connection Normal Calls Cisco IP Phone-to-Cisco IP Phone Call Management Records Logged By Call Type Codec Types Compression / Payload types Codec Cause Codes DescriptionNumber changed Alarms Calling Cisco Technical Assistance Center TAC Index Debug messages and show commands Page Topology

30 VIP specifications

Cisco Systems has been a leading company in networking technology, and its suite of products is continually evolving to meet the demands of modern digital infrastructure. One of the latest introductions is the Cisco Systems 30 VIP, a highly advanced solution designed to enhance network performance and security for businesses of all sizes.

The Cisco Systems 30 VIP stands as a cornerstone for next-generation networking features, providing organizations with significant advantages in speed, reliability, and scalability. At the heart of the 30 VIP are key technologies such as advanced routing protocols and enhanced security measures that ensure seamless data transfer across multiple devices.

Main features of the Cisco Systems 30 VIP include its high throughput capabilities, which support accelerated data processing and lower latency. This is crucial for businesses that rely on real-time data exchange and cloud applications. Additionally, the device incorporates Multi-Protocol Label Switching (MPLS) technology, which optimizes data flow between networks and significantly enhances overall performance.

Another notable characteristic of the 30 VIP is its integrated security features, including advanced threat detection and prevention systems. These are designed to protect sensitive business data from cyber threats, ensuring operational continuity and compliance with industry regulations. The Cisco 30 VIP also supports secure access protocols, allowing for secure remote connections, which is increasingly vital in today’s hybrid work environment.

The adaptability of the Cisco Systems 30 VIP is another of its standout aspects. It offers compatibility with existing Cisco infrastructure, making it easier for businesses to adopt new technologies without overhauling their entire system. This modular approach allows for easy upgrades and integration of future technologies, ensuring long-term viability and investment protection.

Furthermore, the Cisco Systems 30 VIP is powered by intelligent network management software that simplifies monitoring, configuration, and troubleshooting processes. This software enhances network visibility, allowing administrators to identify and address potential issues proactively, thereby reducing downtime and enhancing user experience.

In summary, the Cisco Systems 30 VIP represents a significant advancement in network technology with its high throughput, integrated security features, adaptability, and intelligent management capabilities. These elements combine to provide a robust solution that meets the evolving needs of modern businesses while ensuring secure and efficient operations. As organizations continue to navigate an increasingly complex digital landscape, the Cisco Systems 30 VIP offers a future-proof option designed to facilitate growth and resilience.