Cisco Systems 30 VIP manual Writing Records, Reading Records

Page 77

Cisco IP Telephony Troubleshooting Guide for Cisco CallManager Release 3.0(1)

Appendix D

Call Detail Records (CDRs and CMRs)

This appendix provides detailed information about Call Detail Records (CDRs) and Call Management Records (CMRs, also known as Diagnostic CDRs).

CDR records are written to a database for use in post processing activities. These activities include many functions but will primarily be billing and network analysis.

The database is a Microsoft SQL Server 7.0 database. Access to the database can be made via Open DataBase Connectivity (ODBC).

Access is provided to all tables in the database in a read-only fashion, and to the CDR and CMR tables in a read/write fashion.

To use CDR record data, you may want to read other tables in the database in an effort to obtain information about the type of device the CDR is about. This correlation between devices in the Device table and the IP address listed in the CDR record is not straightforward and is listed as a known issue later in this appendix.

Writing Records

Cisco CallManager writes CDR records to the SQL database as calls are made in a manner consistent with the configuration of each individual Cisco CallManager. This configuration is made via the Service Parameters screen in Cisco CallManager Administration.

All records are written to the primary database for a cluster. If the primary database is not available, then they will be written to any of the other backup databases. Once the primary database becomes available, then writing new records will continue on the primary database and the locally written records will be moved to the primary.

Reading Records

The easiest way to read data from the SQL database may be to use ODBC. A good connection string would look like:

DRIVER={SQL Server};SERVER=machineX;DATABASE=CCM0300

Be sure to use the correct database name. If a Cisco CallManager Release 3.0(1) version of the software is installed over an existing installation, then the database might be migrated if called for by the new installation. In this case, the old database will still exist, and the new database will also exist. The names will differ by adding one to the number of the name. For instance, the original name is CCM0300. After a migration, the newer database name will be CCM0301. The highest number database should be used.

© 2000 Cisco Systems, Inc.

77

Image 77
Contents SDI Trace Output Configuring Traces Reorder Tone Through Gateways Gateway Registration Problems Page Purpose Documentation Checklist Channel Calling Search Space CCAPi Acronym/Term Cnf Law mu-lawCisco IOS Cluster Codec ChannelPartition Flow Full duplex 711 729 225 245 323 Half Duplex HookflashJitter Law mu-law Silence Suppression Voice Activation Detection 931Route Filter Route Group Route List Route Pattern Voice Activation Detection Silence Suppression VoIP Translation PatternCisco CallManager Administration Details View Report Microsoft PerformanceMicrosoft Event Viewer SDI Trace Configuring Traces SDL Trace Page SDLTraceDataFlag Value SDLTraceTypeFlag Value DefinitionCall Detail Records CDR and Call Management Records CMR Sniffer TraceSelect Service Service Parameters CDRs Voice Quality Problem CategoriesPage Packet Number Time absolute ms Time delta ms Button Help John Check Your Loads Phone Resets Dropped Calls Page Page Cisco CallManager Feature Issues Locations Conf Bridge Region1 Region2 MTP Resource Problems MTP Dial Plans Dialing DOES-NOT-EXIST Page DialPlanWizardG Clause NamePattern Device Name Device Description Usage Pattern PartitionReorder Tone Through Gateways Slow Server ResponseGateway Registration Problems Module.port CFG Booting Dhcp for dynamic configurationTracyclose mod port tracystart mod port TaskID Cmd show dhcp Gmsg ***TFTP Error File Not Found Gmsg CCM#0 CPEvent = Loadid -- CPState = LoadResponse Gatekeeper ProblemsRegistration Rejects RRJ Cisco IP Phone Initialization Process Sample TopologyPage Skinny Station Registration Process Message Description Station Register Station ResetStation IP Port AcknowledgePage Cisco CallManager Initialization Process Self-Starting Processes Cisco CallManager Registration Process Cisco CallManager KeepAlive Process Cisco CallManager Intra-Cluster Call Flow Traces Cisco Systems, Inc CCMStationD stationOutputStopTone tcpHandle=0x4fbbc30 Cisco Systems, Inc Call Flow Traces Page Cisco Systems, Inc Following debug messages show that the call is in progress Gatekeeper Endpoint Registration Debug Messages and Show Commands on the Cisco IOS GatewayCisco Systems, Inc Page Cisco IOS Gateway with T1/PRI Interface Cisco IOS Gateway with T1/CAS Interface Cisco Systems, Inc Inter-Cluster H.323 Communication Call Flow Traces Failed Call Flow Cisco Systems, Inc Reading Records Writing RecordsRemoving Records Table SchemaFields in a Call Detail Record Known IssuesDeciphering the Time Stamp Origination leg call identifier Global Call IdentifierDate/time of call origination Originator’s node IDCalling party cause Of call termination Isdn location valueIP address for the originator’s media connection Port for the originator’s media connectionIP address to which the call was delivered unsigned integer Destination span or portIP port to which the call was delivered Called party’s partitionCodec type used by the destination on sending side IP address for the destination outgoing media connectionDate/time of connect Date/time of disconnect unsigned integerCisco CallManager node identifier Global Call Identifier for this callCall Identifier Directory number used on this callLatency experienced during this connection Lost RTP packets during this connectionInterarrival jitter during this connection Normal Calls Cisco IP Phone-to-Cisco IP Phone Call Management Records Logged By Call Type Codec Cause Codes Description Codec Types Compression / Payload typesNumber changed Alarms Calling Cisco Technical Assistance Center TAC Index Debug messages and show commands Page Topology

30 VIP specifications

Cisco Systems has been a leading company in networking technology, and its suite of products is continually evolving to meet the demands of modern digital infrastructure. One of the latest introductions is the Cisco Systems 30 VIP, a highly advanced solution designed to enhance network performance and security for businesses of all sizes.

The Cisco Systems 30 VIP stands as a cornerstone for next-generation networking features, providing organizations with significant advantages in speed, reliability, and scalability. At the heart of the 30 VIP are key technologies such as advanced routing protocols and enhanced security measures that ensure seamless data transfer across multiple devices.

Main features of the Cisco Systems 30 VIP include its high throughput capabilities, which support accelerated data processing and lower latency. This is crucial for businesses that rely on real-time data exchange and cloud applications. Additionally, the device incorporates Multi-Protocol Label Switching (MPLS) technology, which optimizes data flow between networks and significantly enhances overall performance.

Another notable characteristic of the 30 VIP is its integrated security features, including advanced threat detection and prevention systems. These are designed to protect sensitive business data from cyber threats, ensuring operational continuity and compliance with industry regulations. The Cisco 30 VIP also supports secure access protocols, allowing for secure remote connections, which is increasingly vital in today’s hybrid work environment.

The adaptability of the Cisco Systems 30 VIP is another of its standout aspects. It offers compatibility with existing Cisco infrastructure, making it easier for businesses to adopt new technologies without overhauling their entire system. This modular approach allows for easy upgrades and integration of future technologies, ensuring long-term viability and investment protection.

Furthermore, the Cisco Systems 30 VIP is powered by intelligent network management software that simplifies monitoring, configuration, and troubleshooting processes. This software enhances network visibility, allowing administrators to identify and address potential issues proactively, thereby reducing downtime and enhancing user experience.

In summary, the Cisco Systems 30 VIP represents a significant advancement in network technology with its high throughput, integrated security features, adaptability, and intelligent management capabilities. These elements combine to provide a robust solution that meets the evolving needs of modern businesses while ensuring secure and efficient operations. As organizations continue to navigate an increasingly complex digital landscape, the Cisco Systems 30 VIP offers a future-proof option designed to facilitate growth and resilience.