8 Reference

Binary Data (.bin)

The binary data format stores waveform data in binary format and provides data headers that describe that data.

Because the data is in binary format, the size of the file is approximately 5 times smaller than the XYPairs format.

If more than one source is on, you will save all displayed sources, except math functions, to a file.

When the oscilloscope is in the Peak Detect acquisition mode, the minimum and maximum value waveform data points are saved to the file in separate waveform buffers. The minimum value data points are saved first; then, the maximum value data points are saved.

Binary Data in MATLAB

Binary data from the 6000 Series oscilloscope can be imported to The MathWorks MATLAB®. You can download the appropriate MATLAB functions from the Agilent Technologies web site at www.agilent.com/find/mso6000sw.

Agilent provides the .m files, which need to be copied into the work directory for MATLAB. The default work directory is C:\ MATLAB7\work.

Binary Header Format

File Header

There is only one file header in a binary file. The file header consists of the following information.

Cookie Two byte characters, AG, that indicate the file is in the

Agilent Binary Data file format.

Version Two bytes that represent the file version.

346

6000 Series Oscilloscope User’s Guide

Page 346
Image 346
Agilent Technologies 6000 Series manual Binary Data .bin, Binary Data in Matlab, Binary Header Format, File Header

6000 Series specifications

Agilent Technologies has long been recognized as a leader in the field of electronic measurement and test equipment, and the Agilent 6000 Series oscilloscopes exemplify this commitment to innovation and quality. Designed for both professional engineers and researchers, the 6000 Series offers a comprehensive suite of features that enhance usability, accuracy, and efficiency in various applications.

At the heart of the Agilent 6000 Series is its advanced architecture, which integrates a high-performance analog-to-digital converter (ADC) and a sophisticated digital signal processing engine. This combination enables users to capture fast, high-resolution signals with remarkable accuracy, making it suitable for a wide range of applications, from automotive to telecommunications.

One of the standout features of the 6000 Series is its bandwidth options, which typically range from 100 MHz to 500 MHz. This flexibility allows users to select an oscilloscope that best fits their specific needs. Coupled with a sampling rate of up to 4 GSa/s, the 6000 Series offers exceptional timing resolution, ensuring that even the most fleeting signals are accurately represented.

The user interface of the 6000 Series is designed for maximum efficiency. The oscilloscopes are equipped with a large, high-resolution display, enabling users to view complex waveforms in detail. Furthermore, the touch screen interface provides a level of interactivity that simplifies navigation through various functions, making it accessible for both seasoned professionals and novices alike.

Additionally, the 6000 Series incorporates advanced triggering capabilities, allowing users to isolate specific events in their signals easily. The wide array of available triggering options includes edge, pulse width, and serial triggering formats, which are vital for analyzing complex digital communications.

Another noteworthy characteristic of the Agilent 6000 Series is its built-in measurement and analysis tools. The oscilloscopes come equipped with automated measurements, enabling users to quickly gather important data about their signals without manual calculations. This reduces the time spent on testing and increases overall productivity.

In terms of connectivity, the 6000 Series includes USB and LAN interfaces, providing easy data transfer and integration with other devices. The inclusion of advanced software options further enhances data analysis capabilities, enabling users to perform extensive post-acquisition analysis.

In summary, Agilent Technologies' 6000 Series oscilloscopes represent a blend of cutting-edge features, user-friendly design, and high-performance technologies, making them an invaluable tool for engineers and scientists engaged in electronic measurements and analysis. Their versatility and power make them well-suited to meet the demands of modern engineering challenges.