Triggering the Oscilloscope

4

To use FlexRay triggering

N O T E

The N5432A FlexRay triggering and decode option, along with the Agilent VPT1000 protocol analyzer and its MSO communications cable, allow a 6000 Series mixed-signal oscilloscope to:

Control the VPT1000 (without a PC).

Trigger on FlexRay bus frames, times, or errors and correlate them with other signals in a device under test.

Display decoded FlexRay bus data.

For information on displaying decoded FlexRay bus data, see “To decode FlexRay data” on page 294.

Eight of the oscilloscope’s 16 digital channels are used for the VPT1000 connection.

Modes of VPT1000 Control/Operation

The oscilloscope and VPT1000 can be used in one of three ways:

Oscilloscope controls the VPT1000, asynchronous mode monitoring (LAN connection required).

Oscilloscope controls the VPT1000, synchronous mode monitoring (LAN connection required).

PC controls the VPT1000.

When the oscilloscope controls the VPT1000, the system is a standalone, time-correlated measurement system (no external PC required).

Oscilloscope Controls the VPT1000, Asynchronous Mode

Monitoring

For asynchronous analysis, you can set the FlexRay channel and baud rate from the oscilloscope’s VPT1000 Menu.

6000 Series Oscilloscope User’s Guide

155

Page 155
Image 155
Agilent Technologies 6000 Series manual To use FlexRay triggering, Modes of VPT1000 Control/Operation

6000 Series specifications

Agilent Technologies has long been recognized as a leader in the field of electronic measurement and test equipment, and the Agilent 6000 Series oscilloscopes exemplify this commitment to innovation and quality. Designed for both professional engineers and researchers, the 6000 Series offers a comprehensive suite of features that enhance usability, accuracy, and efficiency in various applications.

At the heart of the Agilent 6000 Series is its advanced architecture, which integrates a high-performance analog-to-digital converter (ADC) and a sophisticated digital signal processing engine. This combination enables users to capture fast, high-resolution signals with remarkable accuracy, making it suitable for a wide range of applications, from automotive to telecommunications.

One of the standout features of the 6000 Series is its bandwidth options, which typically range from 100 MHz to 500 MHz. This flexibility allows users to select an oscilloscope that best fits their specific needs. Coupled with a sampling rate of up to 4 GSa/s, the 6000 Series offers exceptional timing resolution, ensuring that even the most fleeting signals are accurately represented.

The user interface of the 6000 Series is designed for maximum efficiency. The oscilloscopes are equipped with a large, high-resolution display, enabling users to view complex waveforms in detail. Furthermore, the touch screen interface provides a level of interactivity that simplifies navigation through various functions, making it accessible for both seasoned professionals and novices alike.

Additionally, the 6000 Series incorporates advanced triggering capabilities, allowing users to isolate specific events in their signals easily. The wide array of available triggering options includes edge, pulse width, and serial triggering formats, which are vital for analyzing complex digital communications.

Another noteworthy characteristic of the Agilent 6000 Series is its built-in measurement and analysis tools. The oscilloscopes come equipped with automated measurements, enabling users to quickly gather important data about their signals without manual calculations. This reduces the time spent on testing and increases overall productivity.

In terms of connectivity, the 6000 Series includes USB and LAN interfaces, providing easy data transfer and integration with other devices. The inclusion of advanced software options further enhances data analysis capabilities, enabling users to perform extensive post-acquisition analysis.

In summary, Agilent Technologies' 6000 Series oscilloscopes represent a blend of cutting-edge features, user-friendly design, and high-performance technologies, making them an invaluable tool for engineers and scientists engaged in electronic measurements and analysis. Their versatility and power make them well-suited to meet the demands of modern engineering challenges.