STL2 Server Board TPS

Server Management

3.Server Management

This section describes the features of the server management subsystem for the STL2 server board. The server management subsystem consists of the BIOS, hardware, and firmware features built into the server board. These features provide hardware monitoring, control, and logging to improve the reliability, availability, and serviceability of the server system.

The server management subsystem conforms to the IPMI (Intelligent Platform Management Interface) v1.0 specification. IPMI defines a standardized, abstracted, message-based interface between system management software and the platform management hardware.

The following comprise the major elements of the server management architecture for the STL2 server board.

Baseboard Management Controller (BMC)

Sensors

Sensor Data Record (SDR) Repository & System Event Log (SEL)

Field Replaceable Unit (FRU) Information

3.1Baseboard Management Controller

The STL2 server management functionality is concentrated in the Baseboard Management Controller (BMC). The BMC is comprised of a Dallas* Semiconductor DS80CH11 (or equivalent) microcontroller and associated circuitry located on the STL2 server board. The BMC and associated circuits are powered from a 5V DC standby voltage, which remains active when system power is switched off, but the AC power source is still on and connected.

A major function of the BMC is to autonomously monitor system management events and log the occurrence in the nonvolatile System Event Log (SEL). The events being monitored include over/under temperature and over/under voltage conditions, fan failure, or chassis intrusion. To enable accurate monitoring, the BMC maintains the nonvolatile Sensor Data Record (SDR) from which sensor information can be retrieved. The BMC provides an ISA host interface to SDR sensor information, so that software running on the server can poll and retrieve the server’s current status. The BMC also provides the interface to the monitored information and SEL that System Management Software, such as Intel® Server Control, uses to poll and retrieve the platform status.

The BMC performs the following functions:

Monitors server boad temperature and voltage

Monitors processor presence and controls Fault Resilient Boot (FRB)

Detects and indicates baseboard fan failure

Manages the SEL interface

Manages the SDR Repository interface

Monitors the SDR/SEL timestamp clock

Monitors the system management watchdog timer

Monitors the periodic SMI timer

Revision 1.0

3-23

Page 31
Image 31
Intel manual Baseboard Management Controller, STL2 Server Board TPS Server Management

STL2 specifications

The Intel STL2, known as the Intel Storage Technology Level 2, is a robust solution designed to elevate storage management and performance for enterprise-level applications. This next-generation system is specifically tailored for organizations that demand high reliability, scalability, and efficiency in their storage solutions.

One of the primary features of the Intel STL2 is its advanced data protection mechanisms. With integrated RAID (Redundant Array of Independent Disks) support, it ensures that data remains safe, even in the event of hardware failure. RAID configurations can be easily set up and managed, allowing businesses to choose the right balance between performance and redundancy based on their unique requirements.

In terms of performance, the STL2 leverages cutting-edge SSD (Solid State Drive) integration to provide high-speed data access and reduced latency. This capability is essential for modern applications that require quick retrieval of large volumes of data, making it suitable for environments like data analytics, AI, and cloud computing.

Scalability is another significant characteristic of the Intel STL2. It is designed to grow alongside an organization’s needs, supporting a diverse range of storage architectures. Whether a company is looking to expand its data center or transition to hybrid cloud solutions, the STL2 can accommodate additional storage resources effortlessly, ensuring that performance does not degrade as storage demands increase.

Moreover, the STL2 features advanced automation and management tools that simplify storage operations. The system allows for real-time monitoring and analytics, providing insights into storage health, performance metrics, and capacity forecasts. This level of visibility enables IT teams to optimize resource utilization and proactively address potential issues before they become critical.

Another notable technology integrated into the STL2 is Intel’s Open Storage Architecture, which promotes interoperability with various software and hardware platforms. This open approach facilitates seamless integrations with existing systems and enhances flexibility within dynamic IT environments.

Lastly, Intel STL2 prioritizes energy efficiency. Its design minimizes power consumption without sacrificing performance, helping organizations reduce their operational costs and carbon footprint.

In summary, the Intel STL2 stands out in the competitive landscape of storage solutions with its focus on data protection, high performance, scalability, advanced management features, open architecture compatibility, and energy efficiency. These characteristics make it an ideal choice for businesses looking to enhance their data storage capabilities in a rapidly evolving digital landscape.