MAX12527
Dual, 65Msps, 12-Bit, IF/Baseband ADC
______________________________________________________________________________________ 21
BINARY-TO-GRAY CODE CONVERSION
1) THE MOST SIGNIFICANT GRAY-CODE BIT IS THE SAME
AS THE MOST SIGNIFICANT BINARY BIT.
0111 0100 1100 BINARY
GRAY CODE0
2) SUBSEQUENT GRAY-CODE BITS ARE FOUND ACCORDING
TO THE FOLLOWING EQUATION:
D11 D7 D3 D0
GRAYX = BINARYX +BINARYX + 1
BIT POSITION
0111 0100 1100 BINARY
GRAY CODE0
D11 D7 D3 D0 BIT POSITION
GRAY10 = BINARY10 BINARY11
GRAY10 = 1 0
GRAY10 = 1
1
3) REPEAT STEP 2 UNTIL COMPLETE:
01 11 0100 1100 BINARY
GRAY CODE0
D11 D7 D3 D0 BIT POSITION
GRAY9 = BINARY9BINARY10
GRAY9 = 1 1
GRAY9 = 0
10
4) THE FINAL GRAY-CODE CONVERSION IS:
0111 0100 1100 BINARY
GRAY CODE0
D11 D7 D3 D0 BIT POSITION
100 11011010
GRAY-TO-BINARY CODE CONVERSION
1) THE MOST SIGNIFICANT BINARY BIT IS THE SAME AS THE
MOST SIGNIFICANT GRAY-CODE BIT.
2) SUBSEQUENT BINARY BITS ARE FOUND ACCORDING TO
THE FOLLOWING EQUATION:
D11 D7 D3 D0
BINARYX = BINARYX+1
BIT POSITION
BINARY10 = BINARY11 GRAY10
BINARY10 = 0 1
BINARY10 = 1
3) REPEAT STEP 2 UNTIL COMPLETE:
4) THE FINAL BINARY CONVERSION IS:
0100 1110 1010
BINARY
GRAY CODE
D11 D7 D3 D0 BIT POSITION
0 BINARY
GRAY CODE0100 11 011010
BINARY9 = BINARY10 GRAY9
BINARY9 = 1 0
BINARY9 = 1
GRAYX
01001110 1010
BINARY
GRAY CODE
0
D11 D7 D3 D0 BIT POSITION
1
01 00 1110 1010
BINARY
GRAY CODE
0
D11 D7 D3 D0 BIT POSITION
11
0111 0100 1100
AB Y=AB
00
01
10
11
0
1
1
0
EXCLUSIVE OR TRUTH TABLE
WHERE IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH
TABLE BELOW) AND X IS THE BIT POSITION:
+WHERE IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH
TABLE BELOW) AND X IS THE BIT POSITION:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
FIGURE 8 SHOWS THE GRAY-TO-BINARY AND BINARY-TO-GRAY
CODE CONVERSION IN OFFSET BINARY FORMAT. THE OUTPUT
FORMAT OF THE MAX12527 IS TWO'S-COMPLEMENT BINARY,
HENCE EACH MSB OF THE TWO'S-COMPLEMENT OUTPUT CODE
MUST BE INSERTED TO REFLECT TRUE OFFSET BINARY FORMAT.
Figure 8. Binary-to-Gray and Gray-to-Binary Code Conversion