Intel 80L188EA, 80L186EA, 80C188EA, 80C186EA specifications Relative Timings

Page 29

80C186EA/80C188EA, 80L186EA/80L188EA

AC SPECIFICATIONS (Continued)

Relative Timings (80C186EA25/20/13, 80L186EA13/8)

Symbol

 

 

 

 

 

 

 

 

 

 

Parameter

Min

Max

Unit

Notes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RELATIVE TIMINGS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TLHLL

ALE Rising to ALE Falling

T b 15

 

ns

 

TAVLL

Address Valid to ALE Falling

(/2T b 10

 

ns

 

TPLLL

Chip Selects Valid to ALE Falling

(/2T b 10

 

ns

1

TLLAX

Address Hold from ALE Falling

(/2T b 10

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 15

 

 

 

TLLWL

ALE Falling to WR Falling

 

ns

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 15

 

 

 

TLLRL

ALE Falling to RD Falling

 

ns

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 10

 

 

 

TRHLH

RD Rising to ALE Rising

 

ns

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 10

 

 

 

TWHLH

WR Rising to ALE Rising

 

ns

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TAFRL

Address Float to RD Falling

0

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2*T) b 5

 

 

 

TRLRH

RD Falling to RD Rising

 

ns

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2*T) b 5

 

 

 

TWLWH

WR Falling to WR Rising

 

ns

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T b 15

 

 

 

TRHAV

RD Rising to Address Active

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T b 15

 

 

 

TWHDX

Output Data Hold after WR Rising

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 10

 

 

 

TWHDEX

WR Rising to DEN Rising

 

ns

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 10

 

 

 

TWHPH

WR Rising to Chip Select Rising

 

ns

1, 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 10

 

 

 

TRHPH

RD Rising to Chip Select Rising

 

ns

1, 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(/2T b 10

 

 

 

TPHPL

CS Inactive to CS Active

 

ns

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDXDL

DEN Inactive to DT/R Low

0

 

ns

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOVRH

ONCE (UCS, LCS) Active to RESIN Rising

T

 

ns

3

 

 

 

 

 

 

 

 

 

 

 

 

TRHOX

ONCE (UCS, LCS) to RESIN Rising

T

 

ns

3

NOTES:

1.Assumes equal loading on both pins.

2.Can be extended using wait states.

3.Not tested.

4.Not applicable to latched A2:1. These signals change only on falling T1.

5.For write cycle followed by read cycle.

6.Operating conditions for 25 MHz are 0§C to a70§C, VCC e 5.0V g10%.

29

29

Image 29
Contents BIT HIGH-INTEGRATION Embedded Processors Contentspage C186EA/80C188EA Block Diagram 80C186EA Core Architecture IntroductionBus Interface Unit Clock Generator80C186EA Peripheral Architecture Timer/Counter UnitInterrupt Control Unit Crystal Connection Clock ConnectionPeripheral Control Block Registers DMA Control Unit Power ManagementChip-Select Unit Refresh Control UnitDifferences Between the 80C186XL and the 80C186EA Pin Descriptions Package InformationPlcc QFP EiajRWH Oscout ClkinResin ResoutBHE ALE/QS0Rfsh RD/QSMDArdy WR/QS1Srdy DENMCS0/PEREQ MCS1/ERRORMCS2 MCS3/NCSAD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 80C186EA PinoutPlcc Package Location with Pin Names Lead Plcc Pinout DiagramQFP Eiaj Pin Names with Package Location QFP Eiaj Package Location with Pin Names Quad Flat Pack Eiaj Pinout DiagramSqfp Pin Locations with Pin Names Sqfp Pin Functions with Package LocationHlda Hold Srdy Lock TEST/BUSY NMI INT0 INT1/SELECT UCS LCS PCS6/A2 PCS5/A1 PCS4 PCS3 PCS2 PCS1CA QFP 60.5 CA Sqfp Package Thermal Specifications400 600 800 1000 CA Plcc Voltage on Other Pins with Respect Electrical SpecificationsAbsolute Maximum Ratings Recommended ConnectionsRD/QSMD, UCS, LCS, MCS0/PEREQ DC Specifications 80C186EA/80C188EARD/QSMD, UCS, LCS, MCS0 DC Specifications 80L186EA/80L188EAPdtmr PIN Delay Calculation Power e V c I e V2 c Cdev c f ICC e Iccs e V c Cdev c fAnd/or higher temperature will increase delay time ICC Versus Frequency and VoltageAC Characteristics-80C186EA25/80C186EA20/80C186EA13 AC SpecificationsSynchronous Inputs HOLD, PEREQ, ErrorTEST, NMI, INT30 T10IN, Ardy SRDY, DRQ10ALE, Lock AC Characteristics-80L186EA13/80L186EA8MCS30, LCS, UCS LOCK, RESOUT, Hlda T0OUT, T1OUTAD150 AD70, ARDY, SRDY, DRQ10 TEST, NMI, INT30, T10IN, ArdyRelative Timings AC Timing Waveforms AC Test ConditionsOutput Delay and Float Waveform Relative Signal Waveform Derating Curves ResetPowerup Reset Waveforms Warm Reset Waveforms Read, Fetch and Refresh Cycle Waveform BUS Cycle WaveformsWrite Cycle Waveform Halt Cycle Waveform Inta Cycle Waveform HOLD/HLDA Waveform Dram Refresh Cycle During Hold Acknowledge Ready Waveform 80C186EA/80C188EA Execution Timings Data Transfer Instruction SET SummaryArithmetic Instruction SET SummaryLogic String Manipulation Within seg adding immed to SP 101 BP 101 CH 110 SI 110 DH 111 DI 111 BH 010 DX 010 DL100 SP Errata Revision History

80L186EA, 80L188EA, 80C186EA, 80C188EA specifications

The Intel 80C188EA, 80C186EA, 80L188EA, and 80L186EA microprocessors represent significant developments in the realm of embedded computing during the 1980s. These processors are part of Intel's x86 architecture, designed to cater to a variety of industrial applications, including automotive and telecommunications.

The 80C188EA and 80C186EA are CMOS variants that offer enhanced power efficiency and reduced heat generation compared to their NMOS predecessors. Operating at clock speeds of up to 25 MHz, these processors are known for their performance in real-time applications. The 80C188EA features a 16-bit data bus and a 16-bit address bus, which can support up to 1 MB of addressable memory. It also boasts an extended instruction set for greater computing flexibility, making it suitable for intricate tasks in embedded systems.

Similarly, the 80C186EA is characterized by its 16-bit architecture, but it includes additional on-chip memory management capabilities. This processor can handle 256 KB of memory directly and supports paged memory management, facilitating efficient multitasking and resource sharing in complex applications. Its integrated DMA controller and interrupt controller allow for superior handling of peripheral devices, making it ideal for real-time processing requirements.

On the other hand, the 80L188EA and 80L186EA are low-power variants optimized for battery-operated designs. These microprocessors are tailored for applications where power consumption is critical. The 80L188EA retains the essential features of the 80C188EA but operates at lower voltage levels, thus allowing for longer operational life in portable devices. The 80L186EA similarly benefits from reduced power consumption, taking advantage of its energy-efficient design to enhance durability in industrial automation scenarios.

All four processors leverage Intel's established x86 architecture, enabling a wide range of software compatibility. Their built-in support for real-time interrupt handling and I/O operations provides developers with valuable tools for building reliable embedded systems. Additionally, they feature on-chip oscillators and timers, further streamlining design requirements and reducing the need for external components.

Overall, the Intel 80C188EA, 80C186EA, 80L188EA, and 80L186EA processors are ideal for diverse applications in embedded systems. Their blend of processing power, energy efficiency, and versatility continues to influence the design of modern electronic devices, underscoring Intel's pivotal role in advancing microprocessor technology.