Philips P89LPC908, P89LPC906, P89LPC907 Enhanced CPU, Clock Definitions, CPU Clock Oscclk

Page 25

Philips Semiconductors

User’s Manual - Preliminary -

 

 

 

CLOCKS

P89LPC906/907/908

2. CLOCKS

 

 

ENHANCED CPU

The P89LPC906/907/908 uses an enhanced 80C51 CPU which runs at 6 times the speed of standard 80C51 devices. A machine cycle consists of two CPU clock cycles, and most instructions execute in one or two machine cycles.

CLOCK DEFINITIONS

The P89LPC906/907/908 device has several internal clocks as defined below:

OSCCLK - Input to the DIVM clock divider. OSCCLK is selected from one of the clock sources (see Figure 2-3,Figure 2-4,) and can also be optionally divided to a slower frequency (see section "CPU Clock (CCLK) Modification: DIVM Register"). Note: fOSC is defined as the OSCCLK frequency.

XCLK - Output of the crystal oscillator (P89LPC906)

CCLK - CPU clock .

PCLK - Clock for the various peripheral devices and is CCLK/2

CPU CLOCK (OSCCLK)

The P89LPC906 provides several user-selectable oscillator options. This allows optimization for a range of needs from high precision to lowest possible cost. These options are configured when the FLASH is programmed and include an on-chip watchdog oscillator, an on-chip RC oscillator, an oscillator using an external crystal, or an external clock source. The crystal oscillator can be optimized for low, medium, or high frequency crystals covering a range from 20 kHz to 12 MHz.

The P89LPC907 and P89LPC908 devices allow the user to select between an on-chip watchdog oscillator and an on-chip RC oscillator as the CPU clock source.

LOW SPEED OSCILLATOR OPTION - P89LPC906

This option supports an external crystal in the range of 20 kHz to 100 kHz. Ceramic resonators are also supported in this configuration.

MEDIUM SPEED OSCILLATOR OPTION - P89LPC906

This option supports an external crystal in the range of 100 kHz to 4 MHz. Ceramic resonators are also supported in this configuration.

HIGH SPEED OSCILLATOR OPTION - P89LPC906

This option supports an external crystal in the range of 4MHz to 12 MHz. Ceramic resonators are also supported in this configuration. If CCLK is 8MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to ’1’ to reduce power consumption. On reset, CLKLP is ’0’ allowing highest performance access. This bit can then be set in software if CCLK is running at 8MHz or slower.

2003 Dec 8

25

Image 25
Contents User Manual Table of Contents Power-On reset code execution Brownout Detection Power-On Detection Power Reduction Modes103 List of Figures List of Figures P89LPC906 PIN ConfigurationsProduct Comparison Logic SymbolsKB Code Flash Block Diagram P89LPC906CPU Oscillator DividerUart Block Diagram P89LPC907Byte Data RAM ClockData RAM Port Block Diagram P89LPC908PIN Descriptions P89LPC906 P1.0 PIN Descriptions P89LPC907TxD P1.2Keyboard Input P1.0 P1.5 PIN Descriptions P89LPC908P1.1 RxDSpecial function registers table P89LPC906 Special function registersMSB LSB Hex Special function registers table P89LPC907 CMP1 Cmpref TRIM.5 TRIM.4 TRIM.3 TRIM.2 TRIM.1 TRIM.0 WDCON# Special function registers table P89LPC908 KB2 KB6 KB5 KB4 TL0 Data Memory OrganizationSFR CodeClock Definitions Enhanced CPUCPU Clock Oscclk LOW Speed Oscillator Option P89LPC906Clock Output P89LPC906 Oscillator Option SELECTION- P89LPC906ON-CHIP RC Oscillator Option Watchdog Oscillator OptionBIT Symbol Function CPU Clock Cclk Wakeup DelayExternal Clock Input Option P89LPC906 CPU Clock Cclk Modification Divm RegisterHigh freq LOW Power Select P89LPC906Med freq Low freqCPU Clocks Interrupt Priority Structure Flag Bits Address Enable Bits Priority RankingSummary of Interrupts P89LPC906 Description Interrupt ArbitrationExternal Interrupt PIN Glitch Suppression External Interrupt InputsSummary of Interrupts P89LPC907,P89LPC908 Description TI & RIBopd EBO Rtcf Kbif Interrupts QUASI-BIDIRECTIONAL Output Configuration Port ConfigurationsNumber of I/O Pins Available Clock Source Reset Option RSTPort latch data Open Drain Output ConfigurationPUSH-PULL Output Configuration INPUT-ONLY ConfigurationPort 0 Analog Functions Strong Port latch data Port pin Input data Glitch rejectionPort Output Configuration P89LPC907 Port Output Configuration P89LPC906Port Output Configuration P89LPC908 Ports Ports TMOD.7 TmodTMOD.6 TMOD.3Mode Overflows. ModeTamod P89LPC907 TAMOD.7-1Tcon T0C/T = Overflow TLn THn TFn Interrupt T0 Pin PclkT0C/T = Overflow THn TFnPclk TL0 Timer Overflow Toggle Output P89LPC907TR0 ENT0 Pclk TH0 Timers 0 REAL-TIME Clock Source UCFG1.2 UCFG1.1 UCFG1.0 Cclk Frequency RTC Clock Frequency FOSC2 FOSC1 FOSC0 RTCS10Xclk Divm CclkWDT Oscillator/DIVM RC Oscillator/DIVMUndefined External clock/DIVMChanging RTCS1-0 Reset Sources Affecting the REAL-TIME ClockREAL-TIME Clock INTERRUPT/WAKE UP Rtccon REAL-TIME CLOCK/SYSTEM Timer Brownout Detection Power Reduction Modes POWER-ON DetectionBrownout Options Power Reduction Modes Pcon Pcona Power Monitoring Functions Modes UartBaud Rate Generator and Selection SFR SpaceUpdating the BRGR1 and BRGR0 Sfrs SFR Locations for UARTsBreak Detect Framing ErrorBrgcon Scon Sstat More about Uart ModeSerial Port Mode 0 Double Buffering Must Be Disabled FE and RI when SM2 = 1 in Modes 2 Framing Error and RI in Modes 2 and 3 with SM2 =More about Uart Modes 2 PCON.6 RB8 SMOD0Double Buffering in Different Modes Double BufferingTransmission with and without Double Buffering 9TH BIT BIT 8 in Double Buffering Modes 1, 2Automatic Address Recognition Multiprocessor CommunicationsUart Uart Block Diagram of Reset POWER-ON Reset Code ExecutionRstsrc Comparator Configuration Internal Reference Voltage Comparator and Power Reduction ModesComparator Interrupt CIN1A CO1 CMP1 CmprefComparator Configuration Example Analog Comparators Kbcon KbpatnKbmask Watchdog Function Watchdog timer configurationWdte Wdse Function Feed Sequence Wdcon PRE2-PRE0 P89LPC906/907/908 Watchdog Timeout ValuesPrescaler Reset Pclk Watchdog Timer in Timer ModeWatchdog Control registerWatchdog Clock Source Power Down OperationPrescaler CLKWatchdog Timer Watchdog Timer Dual Data Pointers Software ResetAUXR1 Move code byte relative to Dptr to the accumulator MOVCA, @A+DPTRMOVXA, @DPTR MOVX@DPTR, aUsing Flash AS Data Storage FeaturesGeneral Description Introduction to IAP-LITEFlash Program Memory Fmcon Assembly language routine to erase/program all or part of a Accessing Additional Flash ElementsReading Additional Flash Elements ERASE-PROGRAMMING Additional Flash ElementsUCFG1 Fmadrl Conf UCFG1 User Configuration BytesP89LPC906 SECx User Security BytesAddress xxxxh Unprogrammed value 00hBootstat BootvecLogical ArithmeticData Transfer Mnemonic Description Bytes Cycles Hex CodeBranching BooleanB8-BF RetiD8-DF Miscellaneous2003 Dec Initial release 104 Index Dual Data Pointers Port 0 12, 13 SFR 109 P89LPC906/907/908