Emerson Process Management 53eA instruction manual Section Calibration Temperature, Introduction

Page 53

MODEL 54eA

SECTION 6.0

 

CALIBRATION - TEMPERATURE

SECTION 6.0

CALIBRATION - TEMPERATURE

6.1 INTRODUCTION

All four amperometric sensors (oxygen, ozone, free chlorine, total chlorine, and monochloramine) are membrane- covered sensors. As the sensor operates, the analyte (the substance to be determined) diffuses through the mem- brane and is consumed at an electrode immediately behind the membrane. The reaction produces a current that depends on the rate at which the analyte diffuses through the membrane. The diffusion rate, in turn, depends on the concentration of the analyte and how easily it passes through the membrane (the membrane permeability). Because the membrane permeability is a function of temperature, the sensor current will change if the temperature changes. To correct for changes in sensor current caused by temperature, the controller automatically applies a membrane permeability correction. Although the membrane permeability is different for each sensor, the change is about 3%/°C at 25°C, so a 1°C error in temperature produces about a 3% error in the reading.

Temperature plays an additional role in oxygen measurements. Oxygen sensors are calibrated by exposing them to water-saturated air, which, from the point of view of the sensor, is equivalent to water saturated with atmospheric oxygen (see Section 7.0 for more information). During calibration, the controller calculates the solubility of atmos- pheric oxygen in water using the following steps. First, the controller measures the temperature. From the tem- perature, the controller calculates the vapor pressure of water and, using the barometric pressure, calculates the partial pressure of atmospheric oxygen. Once the controller knows the partial pressure, it calculates the equilibri- um solubility of oxygen in water using a temperature-dependent factor called the Bunsen coefficient. Overall, a 1°C error in the temperature measurement produces about a 2% error in the solubility calculated during calibration and about the same error in subsequent measurements.

Temperature is also important in the pH measurement required to correct free chlorine readings.

1.The controller uses a temperature dependent factor to convert measured cell voltage to pH. Normally, a slight inaccuracy in the temperature reading is unimportant unless the pH reading is significantly different from 7.00. Even then, the error is small. For example, at pH 12 and 25°C, a 1°C error produces a pH error less than ±0.02.

2.During auto calibration, the controller recognizes the buffer being used and calculates the actual pH of the buffer at the measured temperature. Because the pH of most buffers changes only slightly with temperature, reasonable errors in temperature do not produce large errors in the buffer pH. For example, a 1°C error caus- es at most an error of ±0.03 in the calculated buffer pH.

Without calibration the accuracy of the temperature measurement is about ±0.4°C. Calibrate the controller if

1.±0.4°C accuracy is not acceptable

2.the temperature measurement is suspected of being in error. Calibrate temperature by making the controller reading match the temperature measured with a standard thermometer.

47

Image 53
Contents Amperometric Hart Analyzer/Controller Model 54eAEssential Instructions Page Model 54eA ANALYZER/CONTROLLER 11.0 10.012.0 13.0Iii List of FiguresSection Title Features and Applications Section SpecificationsPower Specifications GeneralOutput Accuracy ± 0.05 mA Alarms Weight/Shipping Weight 5 lb/6 lb 2 kg/2.5 kgSpecifications Free Chlorine Specifications OxygenSpecifications Total Chlorine Specifications Ozone24 VDC 115/230 VAC, 50/60 Hz PowerOrdering Information Unpacking and Inspection Section InstallationInstallation Pipe mounting Pipe and Wall Mounting DimensionsPanel mounting Panel Mounting DimensionsGeneral Section WiringPOWER, ALARM, and Output Wiring 454EPH02 General Sensor WiringWiring Model 499A oxygen, chlorine, and ozone sensors 4054eA01 4054eA03 4054eA02 4054eA04 4054eA07 Section Display and Operation Alarm StatusGeneral Description DisplayProgram Settings List Section Software ConfigurationChoices Factory Settings Configure Choices Factory Settings Temperature compensation Section Menu Tree for the 54eA Controller Main Menu Main Alarm 2 setpoint Alarm setpointsRanging the Outputs MA 0.00 ppm 20 mA 20.00 ppm Output 1 12.00 mAOutput setpoints Alarm setpointsSimulated test Setpoint 1.000 ppm 4mA 0.000 ppm 20mA 10.00 ppmTest output Test alarm 1 OpenSimulated tests Display ConfigureLanguage English Display left Display right Out Display contrast Timeout OnTemp units C Output 1 mA Output 2 mA Output Measurement OutputsOutput 1 control Output 1 Setup Ctrl mode NormalOutput 1 Control Range 4-20 mA Dampen 0 sec Hold Last ValueUsing hold Hold setupAlways configure the control parameters Before making Changing Alarm ParametersChanges in the alarm setup Alarm Control SettingsAlarm 1 setup Alarm 1 controlAlarm 2 control Alarm Low Setpoint 0.000 ppmHigh Alarm Low AlarmFeed limit Disable Alarm FaultTimeout 3600 sec Feed limit timer setupInterval timer Alarm 4 setup Feed limit timerTimer Disable Timer Time activated Interval 24.0 hr Interval timer setupPH sensor Disable PH sensor EnableUsing the 499ACL-01 sensor PH comp Manual PH value 7.00 pHAutocal Standard Diagnostics OffGlass imp lo 20 MΩ Operate iso 7.00 pH Sensor iso 7.00 pH Temp coeffTemp comp Auto Temperature Compensation and Temperature UnitsTemp units C Temp comp Manual Temp units CNoise Reduction 60 HzMain sensor cal Barometric Pressure Bar meas AutoBar units mm Hg Noise rejection Main sensor cal Lock program Lock configSecurity Lock allAction Definitions Controller Mode PriorityCondition Definitions Introduction Section Calibration TemperatureTemperature Calibration Adjust temp + 025.1 CDissolved Oxygen Concentration Section Calibration Dissolved OxygenZeroing the Sensor Sensor must be in zero solutionCalibrating the Sensor in AIR Stabilizing . . . WaitSection Calibrating the Sensor Against a Standard Instrument Calibrate 8.32 ppmCalibrate main sensor Zero main sensor Adjust temperatureStandardize Calibrating Barometric PressureSensor Current as a Function of Free Chlorine Concentration Section Calibration Free Chlorine 499ACL-01Calibrate main sensor Full Scale Calibration Calibrate 1.100 ppmOutput trim Dual range calCalibrate low point Dual Slope CalibrationCalibrate high point Low point 2.000 ppmIntroduction Section Calibration Free Chlorine 498CL-01Ppm 100ppm 000 ppm Section Calibration Free Chlorine 498CL-01 Section Calibration Total Chlorine This page intentionally left blank Sensor Current as a Function of Monochloramine Concentration Section Calibration MonochloraminePpm 100ppm Sensor Current as a Function of Ozone Concentration Section Calibration OzonePpm 100ppm PH at 25C Standards Nominal pH SectionAutomatic TWO-POINT Calibration Autocal buffer10.02 pH Manual TWO-POINT Calibration Calibrate pointPt 04.00pH 25C Pt 4.00pH 25.0C 10.01 pHPt calibration Standardize pH pH slope Standardization ONE-POINT CalibrationPH slope 60.00 mV/pH Trimming the Outputs Section Calibration Current OutputsPID Control Code Section PID and TPC ControlProcess Reaction Curve Method Proportional Gain Plus Integral ResetControl Loop Adjustment and Tuning Process Reaction Curve Section Time Proportional Control TPC Mode Code Troubleshooting When a Fault Message is Showing Section TroubleshootingFault message Explanation See Section OverviewHigh input current Temperature error low or highCheck sensor zero PH low or high input voltageProblem See Section Troubleshooting When no Fault Message is Showing OxygenSense line open Failure factory and Failure eepromZero reading Is unstable Possible error warning during in-process calibrationZero current is too high Process readings are erratic Barometric pressure reading is too high or too lowReadings drift Sensor does not respond to changes in oxygen levelZero current is unstable ProblemSensor can be calibrated, but the current is too low Chlorine readings are too low Sensor does not respond to changes in chlorine levelProblem See Section Sensor does not respond to changes in monochloramine level Readings are too low Troubleshooting When no Fault Message is Showing Ozone Ozone readings are too low Sensor does not respond to changes in ozone levelTroubleshooting When no Fault Message is Showing pH 100 Controller will not accept manual slopeSensor does not respond to known pH changes 101 Process pH readings are noisyProblem Action Troubleshooting not Related to Measurement ProblemsSimulating Inputs Dissolved Oxygen Sensor Polarizing Voltage Resistance Expected currentSimulate Chlorine and Ozone 103 Simulating Inputs Other Amperometric Measurements104 Simulating pH input when the preamplifier is in the sensorVoltage mV PH at 25C 105 Simulating TemperatureSimulating temperature 106 Measuring Reference VoltageReplacement Parts Part Number Description Section MaintenanceGeneral Section Return of MaterialWarranty Specifications subject to change without notice