Intel manual MultiProcessor Specification

Page 68

MultiProcessor Specification

The 8259A INTR output signal is connected to the LINTIN0 of all local APICs, which makes INTR dynamically routable via software. NMI is connected to the LINTIN1 of all local APICs, which makes NMI dynamically routable via software.

In PIC-Mode configurations, the NMI signal is delivered to the local interrupt input 1 (LINTIN1) of all local APICs and the input of a 2-to-1 MUX. When the system is operated in PIC Mode, the NMI is sent to the BSP directly via the MUX. The BIOS and the operating system must leave the LINTIN1 of all local APICs disabled to ensure that the BSP is the only processor that receives the NMI.

In PIC-Mode configurations, the 8259 INTR signal also follows the same convention, connecting to the local interrupt line 0 (LINTIN0) of all local APICs and the input of the second 2-to-1 MUX. When the system is operated in PIC Mode, the 8259 INTR is sent to the BSP directly via the MUX. The BIOS and the operating system must leave the LINTIN0 of all local APICs disabled to ensure that the BSP is the only processor that receives the 8259 INTR signal.

When the system is operated in Symmetric I/O Mode, the operating system may enable the LINTIN0 and LINTIN1 of any or all local APICs as necessary.

5-8

Version 1.4

Image 68
Contents MultiProcessor Specification Copyright 1993-1997. Intel Corporation, All Rights Reserved Revision History Revision Revision History DatePage Table of Contents Contents MP Configuration TableDefault Configurations Appendix E Errata Glossary Appendix a System Bios Programming GuidelinesAppendix B Operating System Programming Guidelines Figures TablesExamples Page Goals Conceptual OverviewScope Features of the SpecificationMultiProcessor Specification Target Audience Organization of This DocumentDocument Organization IntroductionConventions Used in This Document For More InformationSystem Overview Hardware Overview System ProcessorsAdvanced Programmable Interrupt Controller System OverviewSystem Memory 4 I/O Expansion BusBios Overview Operating System OverviewPage Hardware Specification System Memory ConfigurationSystem Memory Cacheability and Shareability System Memory Address MapHardware Specification Memory Cacheability MapExternal Cache Subsystem LockingApic Architecture Posted Memory WriteMultiprocessor Interrupt Control Interrupt Modes Apic VersionsPIC Mode PIC Mode Virtual Wire Mode Virtual Wire Mode via Local ApicVirtual Wire Mode via I/O Apic Symmetric I/O Mode Symmetric I/O ModeApic Memory Mapping Assignment of System Interrupts to the Apic Local UnitFloating Point Exception Interrupt Apic Interval Timers Apic IdentificationReset Support System-wide ResetSystem-wide Init Processor-specific InitSupport for Fault-resilient Booting System Initial StateMP Configuration Table MultiProcessor Specification Offset Length Field Bytesbits in bits Description MP Configuration TableMP Floating Pointer Structure MP Feature Offset Length Field Bytesbits Bits DescriptionInformation Byte Information BytesMP Configuration Table Header MP Configuration Table HeaderOffset Length Field Bytes Bits Description Base MP Configuration Table EntriesMP Configuration Table Header Fields Base MP Configuration Table Entry Types Processor EntriesLength Entry Description Entry Type Code Bytes Comments ApicProcessor Entry Fields Feature Flags from Cpuid Instruction Intel486 and Pentium Processor SignaturesFamily Model Stepping a Description Bit Name Description CommentsBus Entries BUS IDBUS Type StringBus Type String Values Bus Type String Description3 I/O Apic Entries 4 I/O Interrupt Assignment EntriesApic Entry I/O Apic Entry FieldsI/O Interrupt Entry 10. I/O Interrupt Entry Fields Interrupt Type Description Comments Local Interrupt Assignment Entries11. Interrupt Type Values 12. Local Interrupt Entry Fields Destination Local Apic IDDestination Local Apic LINTIN#Extended MP Configuration Table Entries System Address Space Mapping Entries 14. System Address Space Mapping Entry Fields 10. Example System with Multiple Bus Types and Bridge Types Bus Hierarchy Descriptor Entry Compatibility Bus Address Space Modifier Entry 12. Compatibility Bus Address Space Modifier Entry 16. Compatibility Bus Address Space Modifier Entry Fields Default Configurations Discrete Apic Configurations Default ConfigurationsDefault Number Bus Config Code CPUs Type Variant SchematicDefault Configuration for Discrete Apic Default ConfigurationsIntegrated Apic Configurations Default Configuration for Integrated Apic Default Configuration Interrupt Assignments Config INTINx CommentsAssignment of I/O Interrupts to the Apic I/O Unit First I/OAll Local APICs Config LINTINx Comments Assignment of System Interrupts to the Apic Local UnitEisa and IRQ13 Level-triggered Interrupt SupportMultiProcessor Specification System Bios Programming Guidelines Bios Post InitializationProgramming the Apic for Virtual Wire Mode Controlling the Application ProcessorsExample A-1. Programming Local Apic for Virtual Wire Mode System Bios Programming GuidelinesConstructing the MP Configuration Table NMISystem Bios Programming Guidelines Page Operating System Boot-up Operating System Programming GuidelinesOperating System Booting and Self-configuration Interrupt Mode Initialization and HandlingApplication Processor Startup Operating System Programming GuidelinesUsing Init IPI Using Startup IPI AP Shutdown HandlingOther IPI Applications Spurious Apic InterruptsHandling Cache Flush Handling TLB InvalidationSupporting Unequal Processors Page System Compliance Checklist Page Interrupt Routing with Multiple APICs Variable Interrupt RoutingFixed Interrupt Routing Bus Entries in Systems with More Than One PCI Bus I/O Interrupt Assignment Entries for PCI DevicesMultiple I/O Apic Multiple PCI Bus Systems INTD#Page Errata 126 System Address Space Mapping Entries System Address Space Entry14. System Address Space Mapping Entry Fields Entry LengthAddress Type Address BaseBus Hierarchy Descriptor Entry Space records must also be providedBUS Informationsd Parent BUSGlossary Glossary-2 Order Number