Texas Instruments TSB12LV26 manual Switching Characteristics for PCI Interface§

Page 87

7.3Electrical Characteristics Over Recommended Operating Conditions (unless otherwise noted)

 

 

 

OPERATION

 

 

TEST

MIN

MAX

UNIT

 

 

 

 

CONDITIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCI

 

IOH = ± 0.5 mA

0.9 VCC

 

 

 

 

 

IOH = ± 2 mA

2.4

 

 

 

 

 

 

 

 

VOH

High-level output voltage

PHY interface

 

IOH = ± 4 A

2.8

 

V

 

 

 

IOH = ± 8 mA

VCC ± 0.6

 

 

 

 

 

 

 

 

 

 

Miscellaneous³

 

IOH = ± 4 mA

VCC ± 0.6

 

 

 

 

PCI

 

IOL = 1.5 mA

 

0.1 VCC

 

 

 

 

IOL = 6 mA

0

0.55

 

 

 

 

 

 

VOL²

Low-level output voltage

PHY interface

 

IOL = 4 mA

 

0.4

V

 

 

 

IOL = 8 mA

 

 

 

 

 

 

 

 

 

 

 

 

Miscellaneous³

 

IOL = 4 mA

 

0.5

 

IOZ

3-state output high-impedance

Output pins

3.6 V

VO = VCC or GND

 

±20

A

 

 

Input pins

3.6 V

V = GND³

 

±20

 

IIL

Low-level input current

 

 

I

 

 

 

 

 

A

I/O pins²

3.6 V

V

= GND³

±20

 

 

 

 

 

I

 

 

 

 

 

 

 

 

PCI²

3.6 V

V = V

CC

³

 

±20

 

IIH

High-level input current

 

 

I

 

 

 

 

A

Others²

3.6 V

V

= V

CC

³

±20

 

 

 

 

 

I

 

 

 

 

 

²For I/O pins, input leakage (IIL and IIH) includes IOZ of the disabled output. ³ Miscellaneous pins are: GPIO2, GPIO3, SDA, SCL, CYCLEOUT.

7.4 Switching Characteristics for PCI Interface§

 

PARAMETER

MEASURED

MIN

TYP MAX

UNIT

 

 

 

 

 

 

tsu

Setup time before PCLK

±50% to 50%

3

 

ns

th

Hold time before PCLK

±50% to 50%

0

 

ns

td

Delay time, PHY_CLK to data valid

±50% to 50%

2

6

ns

§These parameters are ensured by design.

7.5 Switching Characteristics for PHY-Link Interface§

 

PARAMETER

MEASURED

MIN

TYP MAX

UNIT

 

 

 

 

 

 

tsu

Setup time, Dn, CTLn, LREQ to PHY_CLK

±50% to 50%

6

 

ns

th

Hold time, Dn, CTLn, LREQ before PHY_CLK

±50% to 50%

1

 

ns

td

Delay time, PHY_CLK to Dn, CTLn

±50% to 50%

2

11

ns

§These parameters are ensured by design.

7±3

Image 87
Contents Data Manual SLLS366A TSB12LV26 Important Notice Contents Page Mechanical Information List of Illustrations Vii List of TablesViii Description FeaturesOHCI-Lynx PCI-Based Ieee 1394 Host Controller Related DocumentsOrdering Information Ordering Number Name Voltage PackageCCP PZ Package TOP ViewVccp Pciclkrun Pciinta 3.3 VCC VccpTerminal Name ±1. Signals Sorted by Terminal Number±2. Signal Names Sorted Alphanumerically to Terminal Number ±3. Power Supply TerminalsTerminal Description Name As open-drain ±4. PCI System TerminalsPCIRST, terminal Pciclk±5. PCI Address and Data Terminals During the data phase, AD31±AD0 contain dataPcitrdy ±6. PCI Interface Control TerminalsPcic BE0 Irdy±8. Miscellaneous Terminals ±7. Ieee 1394 PHY/Link TerminalsPage Access TAG Name Meaning ±1. Bit Field Access Tag Descriptions±1. TSB12LV26 Block Diagram Register Name Offset PCI Configuration Registers±2. PCI Configuration Register Map Vendor ID RegisterDevice ID Register Command RegisterCommand ±3. Command Register DescriptionStatus Register Status±4. Status Register Description Class code and revision ID Latency Timer and Class Cache Line Size RegisterLatency timer and class cache line size Class Code and Revision ID RegisterOhci Base Address Register Header Type and Bist RegisterSubsystem identification TI Extension Base Address RegisterSubsystem Identification Register TI extension base addressRegister Interrupt line and pin Power Management Capabilities Pointer RegisterRegister Power management capabilities pointer Interrupt Line and Pin RegisterOhci Control Register Mingnt and Maxlat RegisterCapabilityid Capability ID and Next Item Pointer RegisterRegister Capability ID and next item pointer NextitemPower Management Capabilities Register Register Power management capabilities±14. Power Management Capabilities Register Description Power management extension Power Management Control and Status RegisterPower Management Extension Register Power management control and statusMiscellaneous Configuration Register Miscellaneous configuration±17. Miscellaneous Configuration Register Link Enhancement Control Register Link enhancement control±18. Link Enhancement Control Register Description Subdevid Subsystem Access RegisterSubsystem access ±19. Subsystem Access Register DescriptionGpio Control Register Gpio control±20. Gpio Control Register Description ±18 ±1. Ohci Register Map DMA Context Register Name Abbreviation OffsetGuid ROM Guidrom Physical request filter low PhysicalRequestFilterLoSet IsoRecvIntEventClearIsochronous receive interrupt mask IsoRecvIntMaskSet PhysicalRequestFilterHiClearAsynchronous context control ContextControlSet Isochronous transmit context commandIsochronous receive context command CommandPtr 40Ch + 32*n Pointer Context match ContextMatchOhci Version Register Ohci version±2. Ohci Version Register Description RSU Guid ROM Register±3. Guid ROM Register Description Guid ROM±4. Asynchronous Transmit Retries Register Description Asynchronous Transmit Retries RegisterCSR Data Register Asynchronous transmit retriesCSR control CSR Compare RegisterCSR Control Register CSR compareBus Identification Register Configuration ROM Header RegisterConfiguration ROM header ±6. Configuration ROM Header Register DescriptionBus Options Register Bus options±7. Bus Options Register Description Guid low Guid High RegisterGuid Low Register Guid highPosted Write Address Low Register Configuration ROM Mapping RegisterConfiguration ROM mapping ±8. Configuration ROM Mapping Register DescriptionVendor ID Posted Write Address High RegisterPosted write address high ±9. Posted Write Address High Register DescriptionHost Controller Control Register Host controller control±10. Host Controller Control Register Description Self-ID count Self-ID Buffer Pointer RegisterSelf-ID Count Register Self ID-buffer pointerIsochronous receive channel mask high Isochronous Receive Channel Mask High RegisterIsochronous receive channel mask low Isochronous Receive Channel Mask Low RegisterInterrupt Event Register Interrupt event±14. Interrupt Event Register Description Arrq Rscu Arrs RscuRscu RSC Interrupt Mask RegisterInterrupt mask ±15. Interrupt Mask Register DescriptionIsochronous transmit interrupt event Isochronous Transmit Interrupt Event RegisterIsochronous transmit interrupt mask Isochronous Transmit Interrupt Mask RegisterIsochronous transmit interrupt mask ±21Isochronous receive interrupt mask Isochronous Receive Interrupt Event RegisterIsochronous Receive Interrupt Mask Register Isochronous receive interrupt eventFairness control Fairness Control RegisterFairness control ±18. Fairness Control Register DescriptionLink Control Register Link control±19. Link Control Register Description CPS Node Identification RegisterNode identification ±20. Node Identification Register DescriptionPHY Layer Control Register PHY layer control±21. PHY Control Register Description 24±12 Isochronous Cycle Timer RegisterIsochronous cycle timer ±22. Isochronous Cycle Timer Register DescriptionAsynchronous Request Filter High Register Asynchronous request filter high±23. Asynchronous Request Filter High Register Description ±29 ±30 Asynchronous Request Filter Low RegisterAsynchronous request filter low ±24. Asynchronous Request Filter Low Register DescriptionAre accepted Physical Request Filter High RegisterPhysical request filter high ±25. Physical Request Filter High Register Description±32 Physical request filter low Physical Request Filter Low RegisterPhysical request filter low ±26. Physical Request Filter Low Register Description±34 Physical Upper Bound Register Optional RegisterPhysical upper bound Physical upper boundRscu RSU Asynchronous Context Control RegisterAsynchronous context control ±27. Asynchronous Context Control Register DescriptionAsynchronous Context Command Pointer Register Asynchronous context command pointer31±4 DescriptorAddress Isochronous Transmit Context Control Register Isochronous transmit context controlRSC RSU Isochronous receive context control Isochronous Transmit Context Command Pointer RegisterIsochronous transmit context command pointer Isochronous Receive Context Control RegisterMatch register see .43 is ignored CycleMatchEnableReserved. Bits 27±16 return 0s when read MultiChanMode±40 Isochronous Receive Context Command Pointer RegisterIsochronous receive context command pointer Isochronous receive context command pointer±31. Isochronous Receive Context Match Register Description When the command descriptor w field is set to 11bIsochronous Receive Context Match Register Isochronous receive context match±42 Gpio Interface Page ±1. Registers and Bits Loadable through Serial ROM ROM Offset OHCI/PCI Offset Register Bits Loaded From ROM13h PCI register 40h PCI Ohci register ±2. Serial ROM Map Byte Byte Description AddressRsvd PME Absolute Maximum Ratings Over Operating Temperature Ranges² Electrical CharacteristicsRecommended Operating Conditions Operation MIN NOMUnit Parameter Measured MIN TYP MAX Unit Switching Characteristics for PCI Interface§Switching Characteristics for PHY-Link Interface§ Operation Test MIN MAX Unit ConditionsPage PZ S-PQFP-G100 Mechanical InformationPage Important Notice

TSB12LV26 specifications

The Texas Instruments TSB12LV26 is a high-performance, low-voltage transceiver designed for Serial Bus applications. It is widely recognized for its robust features and versatility, making it a popular choice among engineers and designers in various industries. One of the primary features of the TSB12LV26 is its support for high-speed data transmission, enabling it to operate at speeds up to 400 Mbps. This capability is essential for applications that demand rapid data transfer, such as in multimedia and communication systems.

The TSB12LV26 is part of the IEEE 1394 standard, also known as FireWire, which is widely used for connecting devices like digital cameras, external hard drives, and printers. The chip operates within a voltage range of 2.7V to 3.6V, making it suitable for low-power applications where energy efficiency is critical. The integration of advanced Low-Voltage Differential Signaling (LVDS) technology within the TSB12LV26 enhances signal integrity and reduces electromagnetic interference, resulting in more reliable performance over longer distances.

In terms of its physical characteristics, the TSB12LV26 is available in a compact 48-pin HTQFP package, which is beneficial for space-constrained designs. The device features a comprehensive set of input and output pins, allowing for flexible connectivity options. Additionally, the TSB12LV26 includes advanced power management features, including low-power modes that help extend battery life in portable devices.

Another significant advantage of the TSB12LV26 is its capability for peer-to-peer communication, enabling devices to connect and communicate directly without the need for a central controller. This functionality supports a wide range of device configurations and simplifies system architecture. Furthermore, the transceiver offers built-in support for asynchronous and isochronous data transfer, making it adaptable for various application requirements.

The TSB12LV26 also adheres to stringent EMI and ESD protection standards, ensuring reliable operation in challenging environments. With a rich feature set, excellent performance characteristics, and compliance with industry standards, the Texas Instruments TSB12LV26 remains an ideal choice for engineers looking to implement high-speed and reliable communication in their designs. Overall, it represents a significant advancement in the field of data transmission technology, making it a preferred component for numerous electronic applications.