WA R N I N G

Making Measurements

Cleaning Connections for Accurate Measurements

Visual inspection of fiber ends

Visual inspection of fiber ends can be helpful. Contamination or imperfections on the cable end face can be detected as well as cracks or chips in the fiber itself. Use a microscope (100X to 200X magnifica- tion) to inspect the entire end face for contamination, raised metal, or dents in the metal as well as any other imperfections. Inspect the fiber for cracks and chips. Visible imperfections not touching the fiber core may not affect performance (unless the imperfections keep the fibers from contacting).

Always remove both ends of fiber-optic cables from any instrument, system, or device before visually inspecting the fiber ends. Disable all optical sources before disconnecting fiber-optic cables. Failure to do so may result in permanent injury to your eyes.

Cleaning Connectors

The procedures in this section provide the proper steps for cleaning fiber- optic cables and Agilent Technologies universal adapters. The ini- tial cleaning, using the alcohol as a solvent, gently removes any grit and oil. If a caked- on layer of material is still present, (this can hap- pen if the beryllium- copper sides of the ferrule retainer get scraped and deposited on the end of the fiber during insertion of the cable), a second cleaning should be performed. It is not uncommon for a cable or connector to require more than one cleaning.

2-47

Page 75
Image 75
Agilent Technologies Agilent 86120C manual Cleaning Connectors, Visual inspection of fiber ends

Agilent 86120C specifications

Agilent Technologies is renowned for its innovative solutions in the field of electronic measurement and test instrumentation. Among its extensive portfolio, the Agilent 86120C stands out as a high-performance optical sampling oscilloscope designed for advanced optical communication system testing and development.

One of the key features of the Agilent 86120C is its ability to perform high-speed digital modulation analysis. With a bandwidth of up to 20 GHz, it supports a wide range of optical signals, making it ideal for testing and characterizing various optical components and systems. The device is capable of analyzing multiple modulation formats, including pulse amplitude modulation (PAM-4), making it a critical tool for engineers working on next-generation data transport technologies.

Another outstanding characteristic of the Agilent 86120C is its sophisticated optical performance monitoring capabilities. It employs advanced algorithms and techniques to provide real-time assessment of signal integrity. The oscilloscope can measure parameters such as eye diagrams, jitter, and signal-to-noise ratios, which are crucial for ensuring the reliability and performance of optical communication links.

Incorporating cutting-edge technologies, the Agilent 86120C features a high-sensitivity photodetector optimized for low-light detection and high-speed applications. This allows users to accurately capture and analyze signals, even when working with low-power transmission systems. The oscilloscope also supports multiple input channels, enabling simultaneous testing of multiple wavelengths or different signal paths.

User-friendly software is another highlight of the Agilent 86120C. The intuitive interface streamlines the measurement process and provides comprehensive data analysis tools. Users can quickly generate reports, conduct statistical analysis, and visualize data in various formats to enhance their understanding of signal behavior.

Additionally, the Agilent 86120C is equipped with connectivity options for seamless integration into larger test setups. It can easily interface with other Agilent test instruments, PCs, and networked environments, allowing engineers to create a comprehensive testing environment tailored to their specific needs.

In conclusion, the Agilent 86120C optical sampling oscilloscope combines high performance, advanced features, and cutting-edge technologies to meet the demanding requirements of optical communication testing. Its versatility makes it an essential tool for engineers working in the rapidly evolving field of data communications.