Getting Started

Returning the Instrument for Service

Returning the Instrument for Service

The instructions in this section show you how to properly return the instrument for repair or calibration. Always call the Agilent Technolo- gies Instrument Support Center first to initiate service before returning your instrument to a service office. This ensures that the repair (or calibration) can be properly tracked and that your instrument will be returned to you as quickly as possible. Call this number regardless of where you are located. Refer to “Agilent Technologies Service Offices” on page 7- 18 for a list of service offices.

Agilent Technologies Instrument Support Center +1 (877) 447 7278

If the instrument is still under warranty or is covered by an Agilent Technologies maintenance contract, it will be repaired under the terms of the warranty or contract (the warranty is at the front of this man- ual). If the instrument is no longer under warranty or is not covered by an Agilent Technologies maintenance plan, Agilent Technologies will notify you of the cost of the repair after examining the unit.

When an instrument is returned to a Agilent Technologies service office for servicing, it must be adequately packaged and have a com- plete description of the failure symptoms attached. When describing the failure, please be as specific as possible about the nature of the problem. Include copies of additional failure information (such as the instrument failure settings, data related to instrument failure, and error messages) along with the instrument being returned.

1-11

Page 23
Image 23
Agilent Technologies Agilent 86120C manual Returning the Instrument for Service

Agilent 86120C specifications

Agilent Technologies is renowned for its innovative solutions in the field of electronic measurement and test instrumentation. Among its extensive portfolio, the Agilent 86120C stands out as a high-performance optical sampling oscilloscope designed for advanced optical communication system testing and development.

One of the key features of the Agilent 86120C is its ability to perform high-speed digital modulation analysis. With a bandwidth of up to 20 GHz, it supports a wide range of optical signals, making it ideal for testing and characterizing various optical components and systems. The device is capable of analyzing multiple modulation formats, including pulse amplitude modulation (PAM-4), making it a critical tool for engineers working on next-generation data transport technologies.

Another outstanding characteristic of the Agilent 86120C is its sophisticated optical performance monitoring capabilities. It employs advanced algorithms and techniques to provide real-time assessment of signal integrity. The oscilloscope can measure parameters such as eye diagrams, jitter, and signal-to-noise ratios, which are crucial for ensuring the reliability and performance of optical communication links.

Incorporating cutting-edge technologies, the Agilent 86120C features a high-sensitivity photodetector optimized for low-light detection and high-speed applications. This allows users to accurately capture and analyze signals, even when working with low-power transmission systems. The oscilloscope also supports multiple input channels, enabling simultaneous testing of multiple wavelengths or different signal paths.

User-friendly software is another highlight of the Agilent 86120C. The intuitive interface streamlines the measurement process and provides comprehensive data analysis tools. Users can quickly generate reports, conduct statistical analysis, and visualize data in various formats to enhance their understanding of signal behavior.

Additionally, the Agilent 86120C is equipped with connectivity options for seamless integration into larger test setups. It can easily interface with other Agilent test instruments, PCs, and networked environments, allowing engineers to create a comprehensive testing environment tailored to their specific needs.

In conclusion, the Agilent 86120C optical sampling oscilloscope combines high performance, advanced features, and cutting-edge technologies to meet the demanding requirements of optical communication testing. Its versatility makes it an essential tool for engineers working in the rapidly evolving field of data communications.