Introduction

Description of Software Features

The switch provides a wide range of advanced performance enhancing features. Flow control eliminates the loss of packets due to bottlenecks caused by port saturation. Broadcast storm suppression prevents broadcast traffic storms from engulfing the network. Port-based VLANs provide traffic security and efficient use of network bandwidth. CoS priority queueing ensures the minimum delay for moving real-time multimedia data across the network. While multicast filtering and routing provides support for real-time network applications. Some of the management features are briefly described below.

Configuration Backup and Restore – You can save the current configuration settings to a file on a TFTP server, and later download this file to restore the switch configuration settings.

Authentication – This switch authenticates management access via the console port or Telnet. User names and passwords can be configured locally or can be verified via a remote authentication server (i.e., RADIUS or TACACS+). Port-based authentication is also supported via the IEEE 802.1x protocol. This protocol uses the Extensible Authentication Protocol over LANs (EAPOL) to request user credentials from the 802.1x client, and then verifies the client’s right to access the network via an authentication server.

Other authentication options include SSH for secure management access over a Telnet-equivalent connection, IP address filtering for SNMP/Telnet management access, and MAC address filtering for port access.

Access Control Lists – ACLs provide packet filtering for IP frames (based on address, protocol, TCP/UDP port number or TCP control code) or any frames (based on MAC address or Ethernet type). ACLs can by used to improve performance by blocking unnecessary network traffic or to implement security controls by restricting access to specific network resources or protocols.

Access Control Lists – ACLs provide packet filtering for IP frames (based on address, protocol, TCP/UDP port number or TCP control code) or any frames (based on MAC address or Ethernet type). ACLs can by used to improve performance by blocking unnecessary network traffic or to implement security controls by restricting access to specific network resources or protocols.

DHCP Server and DHCP Relay – Since DHCP uses a broadcast mechanism, a DHCP server and its client must physically reside on the same subnet. Since it is not practical to have a DHCP server on every subnet, DHCP Relay is also supported to allow dynamic configuration of local clients from a DHCP server located in a different network.

Port Configuration – You can manually configure the speed, duplex mode, and flow control used on specific ports, or use auto-negotiation to detect the connection settings used by the attached device. Use the full-duplex mode on ports whenever possible to double the throughput of switch connections. Flow control should also be enabled to control network traffic during periods of congestion and prevent the loss of packets when port buffer thresholds are exceeded. The switch supports flow control based on the IEEE 802.3x standard.

Rate Limiting – This feature controls the maximum rate for traffic transmitted or received on an interface. Rate limiting is configured on interfaces at the edge of a network to limit traffic into or out of the network. Traffic that falls within the rate limit is transmitted, while packets that exceed the acceptable amount of traffic are dropped.

Port Mirroring – The switch can unobtrusively mirror traffic from any port to a monitor port. You can then attach a protocol analyzer or RMON probe to this port to perform traffic analysis and verify connection integrity.

Port Trunking – Ports can be combined into an aggregate connection. Trunks can be manually set up or dynamically configured using IEEE 802.3ad Link Aggregation Control Protocol (LACP). The additional ports dramatically increase the throughput across any connection, and provide redundancy by taking over the load if a port in the trunk should fail. The switch supports one trunk with two Gigabit optional module ports.

Broadcast Storm Control – Broadcast suppression prevents broadcast traffic from overwhelming the network. When enabled on a port, the level of broadcast traffic passing through the port is restricted. If broadcast traffic rises above a pre-defined threshold, it will be throttled until the level falls back beneath the threshold.

Static Addresses – A static address can be assigned to a specific interface on this switch. Static addresses are bound to the assigned interface and will not be moved. When a static address is seen on another interface, the address will be ignored and will not be written to the address table. Static

2

NXA-ENET24 - Software Management Guide

Page 22
Image 22
AMX NXA-ENET24 manual Description of Software Features

NXA-ENET24 specifications

The AMX NXA-ENET24 is a versatile and powerful networked control interface designed to meet the growing demands of modern AV systems. This network switch offers an exceptional combination of reliability, performance, and scalability, making it an ideal choice for professional environments such as conference rooms, educational facilities, and control rooms.

One of the key features of the NXA-ENET24 is its 24-port configuration, allowing for extensive connectivity options. Each port supports 10/100/1000 Mbps speeds, ensuring that high bandwidth applications are handled with ease. Additionally, the switch incorporates advanced auto-negotiation technology, which automatically configures the optimal speed and duplex mode for connected devices. This ensures seamless connectivity and minimizes the risk of network disruptions.

The NXA-ENET24 is designed with advanced management capabilities, including support for VLANs, which helps to segment network traffic for enhanced security and performance. Network administrators can easily create virtual local area networks to optimize traffic flow and reduce congestion. This feature is particularly beneficial in environments where multiple AV systems operate concurrently.

Another significant characteristic of the NXA-ENET24 is its support for Power over Ethernet, or PoE. This feature enables the switch to deliver electrical power alongside data through the network cables. As a result, devices such as IP cameras, VoIP phones, and wireless access points can be powered directly from the switch, simplifying deployment and reducing the need for additional power sources.

Monitoring and management of the switch are made easier through a user-friendly interface. The NXA-ENET24 supports SNMP for network management, allowing users to monitor performance metrics, configure settings, and receive alerts in case of issues. This level of oversight is crucial for maintaining the stability of AV systems in mission-critical applications.

Durability is another hallmark of the NXA-ENET24 design. The switch features a robust chassis that is engineered to withstand the rigors of professional use. With cooling mechanisms in place and a fanless design, the NXA-ENET24 operates quietly and efficiently, making it suitable for environments where noise is a concern.

In conclusion, the AMX NXA-ENET24 is a powerful, reliable, and feature-rich network switch that effectively supports modern AV applications. With its extensive connectivity options, advanced management capabilities, PoE support, and durable design, it is an excellent choice for integrators and organizations looking to optimize their network infrastructure.