User Authentication

Configuring HTTPS - Web

Click Security, HTTPS Settings. Enable HTTPS and specify the port number, then click Apply.

FIG. 54 Web - HTTPS Settings

Configuring HTTPS - CLI

CLI – This example enables the HTTP secure server and modifies the port number.

FIG. 55 CLI - HTTPS Settings

Replacing the Default Secure-Site Certificate

When you log onto the web interface using HTTPS (for secure access), a Secure Sockets Layer (SSL) certificate appears for the switch. By default, the certificate that Netscape and Internet Explorer display will be associated with a warning that the site is not recognized as a secure site. This is because the certificate has not been signed by an approved certification authority.

If you want this warning to be replaced by a message confirming that the connection to the switch is secure, you must obtain a unique certificate and a private key and password from a recognized certification authority.

For maximum security, we recommend you obtain a unique Secure Sockets Layer certificate at the earliest opportunity. This is because the default certificate for the switch is not unique to the hardware you have purchased.

When you have obtained these, place them on your TFTP server, and use the following command at the switch's command-line interface to replace the default (unrecognized) certificate with an authorized one:

FIG. 56 CLI - Replacing the default Secure-Site Certificate

The switch must be reset for the new certificate to be activated. To reset the switch, type: Console#reload

Configuring the Secure Shell

The Berkley-standard includes remote access tools originally designed for Unix systems. Some of these tools have also been implemented for Microsoft Windows and other environments. These tools, including commands such as rlogin (remote login), rsh (remote shell), and rcp (remote copy), are not secure from hostile attacks.

The Secure Shell (SSH) includes server/client applications intended as a secure replacement for the older Berkley remote access tools. SSH can also provide remote management access to this switch as a secure replacement for Telnet. When the client contacts the switch via the SSH protocol, the switch generates a public-key that the client uses along with a local user name and password for access authentication. SSH also encrypts all data transfers passing between the switch and SSH-enabled management station clients, and ensures that data traveling over the network arrives unaltered.

60

NXA-ENET24 - Software Management Guide

Page 80
Image 80
AMX NXA-ENET24 manual Replacing the Default Secure-Site Certificate, Configuring the Secure Shell, Configuring Https Web

NXA-ENET24 specifications

The AMX NXA-ENET24 is a versatile and powerful networked control interface designed to meet the growing demands of modern AV systems. This network switch offers an exceptional combination of reliability, performance, and scalability, making it an ideal choice for professional environments such as conference rooms, educational facilities, and control rooms.

One of the key features of the NXA-ENET24 is its 24-port configuration, allowing for extensive connectivity options. Each port supports 10/100/1000 Mbps speeds, ensuring that high bandwidth applications are handled with ease. Additionally, the switch incorporates advanced auto-negotiation technology, which automatically configures the optimal speed and duplex mode for connected devices. This ensures seamless connectivity and minimizes the risk of network disruptions.

The NXA-ENET24 is designed with advanced management capabilities, including support for VLANs, which helps to segment network traffic for enhanced security and performance. Network administrators can easily create virtual local area networks to optimize traffic flow and reduce congestion. This feature is particularly beneficial in environments where multiple AV systems operate concurrently.

Another significant characteristic of the NXA-ENET24 is its support for Power over Ethernet, or PoE. This feature enables the switch to deliver electrical power alongside data through the network cables. As a result, devices such as IP cameras, VoIP phones, and wireless access points can be powered directly from the switch, simplifying deployment and reducing the need for additional power sources.

Monitoring and management of the switch are made easier through a user-friendly interface. The NXA-ENET24 supports SNMP for network management, allowing users to monitor performance metrics, configure settings, and receive alerts in case of issues. This level of oversight is crucial for maintaining the stability of AV systems in mission-critical applications.

Durability is another hallmark of the NXA-ENET24 design. The switch features a robust chassis that is engineered to withstand the rigors of professional use. With cooling mechanisms in place and a fanless design, the NXA-ENET24 operates quietly and efficiently, making it suitable for environments where noise is a concern.

In conclusion, the AMX NXA-ENET24 is a powerful, reliable, and feature-rich network switch that effectively supports modern AV applications. With its extensive connectivity options, advanced management capabilities, PoE support, and durable design, it is an excellent choice for integrators and organizations looking to optimize their network infrastructure.