α-2-2

Input Ranges

Function

Input range for real

Internal

Precision

Notes

number solutions

digits

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a rule,

 

Pol (x, y)

x2 + y2 < 1 10100

15 digits

precision is

 

 

 

 

 

 

 

 

 

±1 at the

 

 

 

 

 

 

 

 

 

10th digit.*

 

 

 

 

 

 

 

 

Rec

r < 1 10100

 

 

However, for tanθ :
(DEG) θ < 9 (109

"

"

θ 90(2n+1): DEG

(r ,θ)

(RAD) θ < 5 107π radθ ≠ π/2(2n+1): RAD

 

 

(GRA) θ < 1 1010grad

 

 

θ 100(2n+1): GRA

 

 

 

 

 

 

 

° ’ ”

a, b, c < 1 10100

 

 

 

0 < b, c

 

 

 

 

 

 

 

 

 

 

 

 

 

"

"

 

←⎯

x < 1 10

100

 

 

 

 

 

 

 

 

° ’ ”

Sexagesimal display:

 

 

 

x < 1 107

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x > 0:

 

 

 

 

 

 

 

 

 

–1 10100 < ylogx < 100

 

 

 

 

 

x = 0 : y > 0

m

 

 

 

 

y

 

 

 

 

 

 

^(x )

x < 0 : y = n, ––––

"

"

 

 

 

 

2n+1

 

 

 

(m, n are integers)

 

 

 

 

 

However;

 

 

 

 

 

• Complex numbers can be

 

 

–1 10100 < y log x < 100

 

 

used as arguments.

 

 

 

 

 

 

 

 

 

 

y > 0 : x 0

 

 

 

 

 

 

 

–1 10100 <

1

logy < 100

 

 

 

 

 

y = 0 : x > 0

x

 

 

 

x

'y

 

2n+1

 

 

 

 

 

 

 

 

 

 

 

y < 0 : x = 2n+1, ––––

"

"

 

 

 

 

 

 

 

m

 

 

 

(m 0; m, n are integers)

 

 

 

 

 

However;

 

 

 

 

 

• Complex numbers can be

 

 

 

100

 

1

 

 

 

 

 

 

 

 

 

 

used as arguments.

 

 

–1 10 < x log y < 100

 

 

 

 

 

 

 

 

 

Total of integer, numerator

 

 

 

ab/cand denominator must be

"

"

 

within 10 digits (includes

 

 

 

 

 

 

 

 

division marks).

 

 

 

 

 

 

 

 

 

 

 

 

 

*For a single calculation, calculation error is ±1 at the 10th digit. (In the case of exponential display, calculation error is ±1 at the last significant digit.) Errors are cumulative in the case

of consecutive calculations, which can also cause them to become large. (This is also true of internal consecutive calculations that are performed in the case of ^(xy), x'y, x!, 3'x, nPr, nCr, etc.)

In the vicinity of a function’s singular point and point of inflection, errors are cumulative and may become large.

20070201