Spectrum Brands MC.31XX manual Clock generation, Internally generated sample rate

Page 58

Overview

Clock generation

 

 

Clock generation

Overview

The Spectrum boards offer a wide variety of different clock modes to match all the customers needs. All the clock modes are described in detail with programming examples below. This chapter simply gives you an overview which clock mode to select:

Standard internal sample rate

PLL with internal 40 MHz reference. This is the easiest way to generate a sample rate with no need for additional external clock signals. The sample rate has a fine resolution.

Quartz and divider

Internal quarz clock with divider. For applications that need a lower clock jitter than the PLL produces. The possible sample rates are restricted to the values of the divider.

External reference clock

PLL with external 1 MHz to 125 MHz reference clock. This provides a very good clock accuracy if a stable external reference clock is used.It also allows the easy synchronization with an external source.

External clock

Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a system clock or to feed in an exact matching sample rate.

External clock with divider

The externally fed in clock can be divided to generate a low-jitter sample rate of a slower speed than the external clock available.

There is a more detailed description of the clock generation part available as an application note. There some more background information and details of the internal structure are explained.

Internally generated sample rate

Standard internal sample rate

The internal sample rate is generated in default mode by a PLL and dividers out of an internal 40 MHz frequency reference. In most cases the user does not need to care on how the desired sample rate is generated by multiplying and dividing internally. You simply write the desired sample rate to the according register shown in the table below. If you want to make sure the sample rate has been set correctly you can also read out the register and the driver will give you back the sample rate that is matching your desired one best.

Register

Value

Direction

Description

SPC_SAMPLERATE

20000

w

Defines the sample rate in Hz for internal sample rate generation.

 

 

r

Read out the internal sample rate that is nearest matching to the desired one.

If a sample rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock con- nector and can be used to synchronize external equipment with the board.

Register

Value

Direction

Description

SPC_EXTERNOUT

20110

r/w

Enables clock output on external clock connector. Only possible with internal clocking. (old name)

SPC_CLOCKOUT

20110

r/w

Enables clock output on external clock connector. Only possible with internal clocking. (new name)

Example on writing and reading internal sample rate

SpcSetParam (hDrv, SPC_SAMPLERATE, 1000000);

// Set internal sample rate to 1 MHz

SpcSetParam

(hDrv,

SPC_CLOCKOUT, 1);

// enable the clock

output

of

that 1 MHz

SpcGetParam

(hDrv,

SPC_SAMPLERATE, &lSamplerate);

//

Read back

the sample rate that has been programmed

printf („Samplerate = %d\n“, lSamplerate);

//

print it.

Output

should

be

„Samplerate = 1000000“

Minimum internal sample rate

The minimum internal sample rate is limited on all boards to 1 kHz and the maximum sample rate depends on the specific type of board. The maximum sample rates for your type of board are shown in the tables below.

58

MC.31xx Manual

Image 58
Contents MC.31xx English version April 27Page Introduction Hardware InstallationSoftware Driver Installation SoftwareAnalog Inputs Fifo ModeProgramming the Board Standard acquisition modesOption Timestamp Option Multiple RecordingOption Gated Sampling Option Extra I/OGeneral Information IntroductionPreface PrefaceMC.3110 MC.3120 MC.3130 MC.3111 MC.3121 MC.3131 Different models of the MC.31xx seriesIntroduction MC.3112 MC.3122 MC.3132 Extra I/O Option -XMF Additional optionsDigital inputs Introduction Additional optionsStarhub TimestampSpectrum type plate Block diagram Technical Data Hardware informationIntroductionHardware information Dynamic ParametersOrder information Order No DescriptionInstalling the board in the system Hardware InstallationSystem Requirements Installing a board with extra I/O Option -XMF Installing a board with digital inputs/outputsHardware Installation Hooking up the boards Installing multiple boards synchronized by starhubMounting the wired boards Only use the included flat ribbon cablesInstalling multiple synchronized boards Interrupt Sharing Software Driver InstallationInterrupt Sharing Windows InstallationSoftware Driver Installation Windows Version controlDriver Update Windows Driver Update Software Driver Installation Windows XPWindows XP Windows NT Software Driver Installation Windows NTAdding boards to the Windows NT driver Linux OverviewDriver info Installing the deviceNow it is possible to access the board using this device Automatic load of the driverFirst Test with SBench SoftwareSoftware Overview Software OverviewMicrosoft Visual C++ ++ Driver InterfaceHeader files Borland C++ BuilderDriver functions Other Windows C/C++ compilersNational Instruments LabWindows/CVI Include DriversFunction SpcSetParam Software ++ Driver Interface Using the Driver under LinuxFunction SpcSetParam Function SpcSetData WindowsInclude Driver Delphi Pascal Programming InterfaceType definition ExamplesSoftware Visual Basic Examples Visual Basic Programming InterfaceVBA for Excel Examples Visual Basic Programming Interface Overview Error handlingProgramming the Board Register tablesStarting the automatic initialization routine Example for error checkingInitialization PCI RegisterHardware version Installed memoryInstalled features and options Date of productionProgramming the Board Initialization Used interrupt lineUsed type of driver Driver versionSpcpcimemsize Powerdown and resetExample program for the board initialization SpcpciserialnoImportant note on channels selection Analog InputsChannel Selection Analog InputsSPCCHROUTE0 Channel reroutingRerouting information for module SPCCHROUTE1Setting up the inputs Input rangesInput offset Register Value Direction Description Offset rangeOverrange bit Automatical adjustment of the offset settingsInput termination Spcadjautoadj Adjall Spcadjsave ADJUSER0Memory, Pre- and Posttrigger Standard acquisition modesProgramming Pretrigger = memsize posttriggerMaximum posttrigger in MSamples Starting without interrupt classic modeCommand register Minimum memsize and posttrigger in samplesStandard acquisition modes Programming Starting with interrupt driven modeStatus register 201100 Enables the fast 8 bit mode Normal modeFast 8 bit mode Data organizationValue ’start’ as a 32 bit integer value Standard modeReading out the data with SpcGetData Value ’len’ as a 32 bit integer valueProgramming Background Fifo Read Fifo ModeGeneral Information Speed LimitationsTheoretical maximum sample rate PCI Bus Throughput Programming Fifo ModeSoftware Buffers 60040 Read out the number of available Fifo buffersAnalog acquisition or generation boards Fifo Mode ProgrammingBuffer processing Digital I/O 701x or 702x or pattern generator boardsSpcfifostart Example Fifo acquisition modeFifo acquisition example SpcfifowaitSample format Internally generated sample rate Clock generationStandard internal sample rate External reference clock Using plain quartz without PLLMaximum internal sample rate in MS/s normal mode Clock generationMinimum external sample rate External clockingDirect external clock Maximum external samplerate in MS/sCHANNEL0 CHANNEL1 CHANNEL2 CHANNEL3 External clock with dividerFifo Software trigger Trigger modes and appendant registersGeneral Description External TTL triggerTrigger modes and appendant registers Example on how to set up the board for positive TTL triggerEdge triggers Positive TTL triggerTTL pulsewidth trigger for long High pulses Pulsewidth triggersPositive and negative TTL trigger TTL pulsewidth trigger for short High pulsesSpctriggermode Tmttlhighlp TTL pulsewidth trigger for long LOW pulsesTTL pulsewidth trigger for short LOW pulses SpcpulsewidthSpctriggermode Tmchannel Channel TriggerOverview of the channel trigger registers TmchxoffSPCTRIGGERMODE0 Tmchxoff TriggerlevelSpctriggermode Tmchor SPCTRIGGERMODE2 TmchxoffSPCHIGHLEVEL0 Reading out the number of possible trigger levelsSPCTRIGGERMODE0 Tmchxpos Input ranges Triggerlevel ±50 mV ±100 mV ±200 mV ±500 mVChannel trigger on negative edge Detailed description of the channel trigger modesChannel trigger on positive edge Channel trigger on positive and negative edgeChannel pulsewidth trigger for long positive pulses Channel pulsewidth trigger for long negative pulsesChannel pulsewidth trigger for short negative pulses Channel pulsewidth trigger for short positive pulsesTmchxposgsp Channel steepness trigger for flat positive pulses Channel steepness trigger for flat negative pulsesChannel steepness trigger for steep positive pulses Channel steepness trigger for steep negative pulsesChannel window trigger for entering signals Channel window trigger for leaving signalsChannel window trigger for long inner signals Channel window trigger for long outer signalsChannel window trigger for short inner signals Channel window trigger for short outer signalsOption Multiple Recording Standard ModeWhen using Multiple Recording pretrigger is not available Recording modesSpcmemsize Resulting start delaysTrigger modesOption Multiple Recording SpctriggermodeOption Gated Sampling General information and trigger delayOption Gated Sampling SpcgateEnd of gate alignement Alignement samples per channelOption Gated SamplingTrigger modes Number of samples on gate signalAllowed trigger modes External TTL edge triggerChannel trigger Example programExample program Option Gated Sampling Spctriggermode TmttlposTimestamp modes StartReset modeOption Timestamp LimitsTimestamp Status RefClock mode optionalFunctions for accessing the data Reading out timestamp dataSpcGetData nr, ch, start, len, data Data formatSpctimestampcount Example programs Standard acquisition modeAcquisition with Multiple Recording Analog Outputs Option Extra I/ODigital I/Os Channel directionProgramming example Programming example Option Extra I/OSample format Bit Standard Mode Digital Inputs enabledOption Digital inputs SpcreaddigitalSynchronization with option cascading Synchronization OptionDifferent synchronization options Synchronization with option starhubLet the master calculate it’s clocking Setup order for the different synchronization optionsSet up the board parameters Write Data to on-board memory output boards onlyExample of board #2 set as trigger master Example for data writingDefine the boards for trigger master 4a Define synchronization or triggerDefine the remaining boards as clock slaves Define the board for clock masterExample board number 0 is clock master Arm the boards for synchronizationRead data from the on-board memory acquisition boards only Start all of the trigger master boardsWait for the end of the measurement Restarting the board for another synchronized runSpcsyncmasterfifo Example of Fifo buffer allocation2a Write first data for output boards SpcsyncslavefifoAdditions for synchronizing different boards General informationCalculating the clock dividers 20xx 30xx 31xx 40xx 45xx 60xx 61xx 70xx 72xx40 MS/s Setting up the clock dividerBoard type 3122 3120 Board type 3025 3131Delay in Fifo mode Resulting delays using different boards or speedsDelay in standard non Fifo modes Additions for equal boards with different sample ratesError name Value hex Value dec Error description Error CodesError Codes AppendixExtra I/O with external connectorOption -XMF Pin assignment of the multipin connectorOption Digital inputs Pin assignment of the multipin cable