HP Modular Cooling System manual Typical plumbing installation guidelines, Watts TP or equivalent

Page 70

Item

Description

Specifications

 

 

 

21

Test plug

Type: Corrosion-resistant brass body with core inserts, gasketed and

 

 

threaded cap, with extended stem for units to suit piping insulation

 

 

thickness

 

 

Watts TP or equivalent

 

 

 

*The 1μm filter might require a minimum of 762 mm (30 inches) clearance under the floor for installation. If a filter cannot be installed under the roof because of space constraints, it may be installed further upstream in the pipe system.

Typical plumbing installation guidelines

CAUTION: The water supply system feeding the HP Modular Cooling System 200/100 must be capable of withstanding operation with rapid and frequent changes in flow requirements.

Installation service for this MCS-200/100 is order number UE005E.

Contractors must install all valves, strainers, and other piping components to the specifications provided in “Piping approaches (on page 51).” All components must be readily accessible.

Contractor must flush all lines of debris and cap prior to MCS-200/100 installation.

Contractors must furnish and install Armacell AP/Armaflex closed-cell elastomeric thermal insulation with minimum 25-mm (1-inch) wall thickness on all customer piping and fittings. Contractors shall furnish and install similar insulation type with minimum 6.4-mm (0.25-inch) wall thickness for MCS-200/100 chilled water hoses and fittings. The MCS-200/100 hoses have a 45-mm (1.75-inch) OD and a bolt clamp that is 76 mm (3 inches) wide, 57 mm (2.25 inches) high, and 51 mm (2 inches) deep on the side that must be connected to the infrastructure pipe. All insulation joints must be taped with AP/Armaflex® Insulation Tape, 3 mm (0.125 inch) thick x 50 mm (2 inches) wide x 9.1 m (30 ft) long. Mitered fittings must be cemented with Armaflex® 520 Adhesive.

MCS-200/100 condensate and overflow hoses do not require insulation.

Filters might require a minimum of a 762-mm (30-inches) clearance under the floor for installation. If the filters cannot be installed under the floor due to space constraints, they can be placed upstream of the piping system.

HP recommends that the MCS-200/100 Hook Up Kit (BW971A) be ordered for each MCS-200/100 installed.

The water supply system feeding the MCS-200/100 must capable of withstanding the following situations:

Deadheading—operating with a closed line

Operation with rapid and frequent changes in flow requirements

Operation over long periods with zero water flow

Facility planning for implementation 70

Image 70
Contents HP Modular Cooling System 200/100 Site Preparation Guide Part Number June EditionPage Contents Appendix B Conversion factors and formulas Before you contact HP HP contact informationOverview OverviewMCS-100 unit dual-rack configuration MCS-200 unit single-rack configuration Product overview Air flow for MCS-100 single-rack configuration Air flow for MCS-100 dual-rack configuration Air flow for MCS-200 single-rack configuration Key components MCS-100 components Description MCS-200 components Unit top view Physical specifications MCS-100 expansion rack physical specificationsElectrical specifications Parameter Value Comments Facility planning overview Facility planning for implementationSpace and positioning considerations Delivery space requirements Maneuvering space requirementsMCS-200/100 Reference Operational space requirements MCS-200/100 expansion rack ReferenceFacility planning for implementation System positioning Cable openings Facility planning for implementation Facility planning for implementation Cabinet leveling feet Top view Bottom viewFacility planning for implementation MCS-100 dual-rack configuration IT rack side view MCS-100 single-rack configuration Facility planning for implementation MCS-200 single-rack configuration MCS-200 dual-rack configuration IT rack side view MCS-200 single-rack configuration Floor loading considerations Facility planning for implementation Page Term Description WeightElectrical considerations RatingSystem grounding MCS-200 Raised floor grounding Description Voltage fluctuations and outages Connecting to facility A/C powerElectrical planning around water-handling components Facility planning for implementation Coolant source planning Plumbing considerations HP Water Hook-Up Kit M6 screw Above the floor for MCS-200 only Facility planning for implementation Piping approaches Hose openings Bottom view Top view MCS-200 hose openings Bottom view Top view Rear view Raised floor cutouts for the MCS unitMCS-100 floor tile cutouts Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Chilled water system components Fittings Astm B16.22 Wrought copper Description Specifications StrainerTypical plumbing installation guidelines Watts TP or equivalentCoolant requirements General thermal requirementsCooling loop sizing Determining heat load capacitiesPage Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Acceptable water quality specifications Additional water precautionsControl system Before installing and running active componentsEnvironmental considerations Plumbing materials to avoidFacility planning for implementation Dimension Measurement Appendix a Forms and checklistsDelivery survey form Site preparation checklist Pre-installation checklistsArea/condition Yes Comment/date Safety considerations Appendix a Forms and checklists Appendix B Conversion factors and formulas Conversion factors and formulasWarranty information Regulatory requirements for Exit signs Safety and regulatory complianceRegulatory information Regulatory information Before you contact HP Support and other resourcesHP contact information Acronyms and abbreviations Uninterruptible power system Water steam pressureDocumentation feedback Index Site preparation checklist
Related manuals
Manual 10 pages 27.17 Kb Manual 84 pages 16.27 Kb Manual 4 pages 15.71 Kb Manual 16 pages 5.24 Kb Manual 83 pages 40.42 Kb Manual 60 pages 37.09 Kb

Modular Cooling System specifications

The HP Modular Cooling System (MCS) is a state-of-the-art solution designed to efficiently manage the heat generated by high-density IT environments. As data centers face the ever-increasing demand for processing power, traditional cooling methods often fall short, leading to inefficiencies and raised energy costs. The HP MCS addresses this issue with a scalable, flexible design that optimizes cooling performance while minimizing energy consumption.

One of the main features of the HP Modular Cooling System is its modular architecture, which allows for easy expansion and customization based on the specific needs of a data center. This scalability means that as a facility grows or changes, the cooling system can be modified without the need for extensive renovations or replacements. The MCS can be installed in various configurations, further enhancing its versatility.

The technology behind the HP MCS includes advanced cooling methods such as direct evaporative cooling and chilled water cooling. Direct evaporative cooling utilizes the principles of evaporative heat exchange to cool air without excessive energy consumption, making it an eco-friendly choice. In contrast, chilled water cooling uses a network of pipes filled with chilled water to remove heat from the server environment efficiently. This combination allows the MCS to adapt to various heat loads and ambient conditions.

Another notable characteristic of the HP Modular Cooling System is its intelligent controls and sensors. These components continually monitor temperature and humidity levels within the data center, automatically adjusting cooling output to maintain optimal conditions. This proactive approach helps to prevent overheating, reduces energy usage, and ensures the longevity of IT equipment.

Energy efficiency is further enhanced through the MCS's integration with HP's monitoring and management software. This software analyzes cooling performance trends, providing actionable insights for facility managers, enabling them to make informed decisions regarding cooling strategies. Additionally, the system is designed with environmentally sustainable practices in mind, aligning with global initiatives to reduce carbon footprints and promote green technology.

The HP Modular Cooling System stands out for its combination of innovative technologies, flexibility, and a commitment to energy efficiency. As data centers continue to evolve, the MCS remains a crucial asset in the pursuit of optimized performance and sustainability, providing a reliable solution to meet the demanding cooling needs of modern IT infrastructure.