HP Modular Cooling System manual Plumbing considerations

Page 46

The water source should be shared water or dedicated facility water loop.

Maximum and minimum temperatures of building chilled water plant, and target chilled water temperature of dedicated loop, should be based on the total cooling capacity required and planned.

The viscosity of the chilled liquid, combined with the length and elevation changes in piping determined by selected route, can affect pipe size selection.

For the MCS-200/100, HP recommends using a water source that is a dedicated chiller unit or water-to-water heat exchanger that enables line isolation, better control of individual systems, and regulated water quality. The chilled water source for this loop is provided by one or more chiller systems. Advantages of using a dedicated loop include the following:

Easier scheduling of maintenance to either a building system or dedicated MCS-200/100 loop

Easier maintenance of water quality parameters in the dedicated closed loop

Better temperature and flow regulation to guarantee the needs of the MCS-200/100

More flexibility to regulate water temperature in order to reduce the potential for condensation

The use of building-chilled water for the MCS-200/100 unit is possible under certain conditions. Consult with a qualified facilities design expert, however, to determine whether this approach is possible within your specific data center. Refer to the requirements for water quality, temperature, and flow rate described in this section. Regardless of chilled water service approach, consult with a qualified facilities design expert to analyze new and existing systems and specify new work to be sure that water quality, temperature, and water flow requirements can be met. The new work must meet all local safety and building code requirements as well as your facility quality standards. Piping drawings and schematics included here are diagrammatic to convey a conceptual understanding of the MCS-200/100 connection requirements.

Dedicated chiller unit directly supplying the MCS-200/100

Plumbing considerations

When installing the MCS-200/100, consider the following plumbing factors:

Installing water shut off valves to enable infrastructure system flushing for the inlet and outlet of each MCS-200/100 (highly recommended by HP)

Facility planning for implementation 46

Image 46
Contents HP Modular Cooling System 200/100 Site Preparation Guide Part Number June EditionPage Contents Appendix B Conversion factors and formulas Before you contact HP HP contact informationOverview OverviewMCS-100 unit dual-rack configuration MCS-200 unit single-rack configuration Product overview Air flow for MCS-100 single-rack configuration Air flow for MCS-100 dual-rack configuration Air flow for MCS-200 single-rack configuration Key components MCS-100 components Description MCS-200 components Unit top view Physical specifications MCS-100 expansion rack physical specificationsElectrical specifications Parameter Value Comments Facility planning overview Facility planning for implementationSpace and positioning considerations Delivery space requirements Maneuvering space requirementsMCS-200/100 Reference Operational space requirements MCS-200/100 expansion rack ReferenceFacility planning for implementation System positioning Cable openings Facility planning for implementation Facility planning for implementation Cabinet leveling feet Top view Bottom viewFacility planning for implementation MCS-100 dual-rack configuration IT rack side view MCS-100 single-rack configuration Facility planning for implementation MCS-200 single-rack configuration MCS-200 dual-rack configuration IT rack side view MCS-200 single-rack configuration Floor loading considerations Facility planning for implementation Page Term Description WeightElectrical considerations RatingSystem grounding MCS-200 Raised floor grounding Description Voltage fluctuations and outages Connecting to facility A/C powerElectrical planning around water-handling components Facility planning for implementation Coolant source planning Plumbing considerations HP Water Hook-Up Kit M6 screw Above the floor for MCS-200 only Facility planning for implementation Piping approaches Hose openings Bottom view Top view MCS-200 hose openings Bottom view Top view Rear view Raised floor cutouts for the MCS unitMCS-100 floor tile cutouts Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Chilled water system components Fittings Astm B16.22 Wrought copper Description Specifications StrainerTypical plumbing installation guidelines Watts TP or equivalentCoolant requirements General thermal requirementsCooling loop sizing Determining heat load capacitiesPage Facility planning for implementation Facility planning for implementation Facility planning for implementation Facility planning for implementation Acceptable water quality specifications Additional water precautionsControl system Before installing and running active componentsEnvironmental considerations Plumbing materials to avoidFacility planning for implementation Dimension Measurement Appendix a Forms and checklistsDelivery survey form Site preparation checklist Pre-installation checklistsArea/condition Yes Comment/date Safety considerations Appendix a Forms and checklists Appendix B Conversion factors and formulas Conversion factors and formulasWarranty information Regulatory requirements for Exit signs Safety and regulatory complianceRegulatory information Regulatory information Before you contact HP Support and other resourcesHP contact information Acronyms and abbreviations Uninterruptible power system Water steam pressureDocumentation feedback Index Site preparation checklist
Related manuals
Manual 10 pages 27.17 Kb Manual 84 pages 16.27 Kb Manual 4 pages 15.71 Kb Manual 16 pages 5.24 Kb Manual 83 pages 40.42 Kb Manual 60 pages 37.09 Kb

Modular Cooling System specifications

The HP Modular Cooling System (MCS) is a state-of-the-art solution designed to efficiently manage the heat generated by high-density IT environments. As data centers face the ever-increasing demand for processing power, traditional cooling methods often fall short, leading to inefficiencies and raised energy costs. The HP MCS addresses this issue with a scalable, flexible design that optimizes cooling performance while minimizing energy consumption.

One of the main features of the HP Modular Cooling System is its modular architecture, which allows for easy expansion and customization based on the specific needs of a data center. This scalability means that as a facility grows or changes, the cooling system can be modified without the need for extensive renovations or replacements. The MCS can be installed in various configurations, further enhancing its versatility.

The technology behind the HP MCS includes advanced cooling methods such as direct evaporative cooling and chilled water cooling. Direct evaporative cooling utilizes the principles of evaporative heat exchange to cool air without excessive energy consumption, making it an eco-friendly choice. In contrast, chilled water cooling uses a network of pipes filled with chilled water to remove heat from the server environment efficiently. This combination allows the MCS to adapt to various heat loads and ambient conditions.

Another notable characteristic of the HP Modular Cooling System is its intelligent controls and sensors. These components continually monitor temperature and humidity levels within the data center, automatically adjusting cooling output to maintain optimal conditions. This proactive approach helps to prevent overheating, reduces energy usage, and ensures the longevity of IT equipment.

Energy efficiency is further enhanced through the MCS's integration with HP's monitoring and management software. This software analyzes cooling performance trends, providing actionable insights for facility managers, enabling them to make informed decisions regarding cooling strategies. Additionally, the system is designed with environmentally sustainable practices in mind, aligning with global initiatives to reduce carbon footprints and promote green technology.

The HP Modular Cooling System stands out for its combination of innovative technologies, flexibility, and a commitment to energy efficiency. As data centers continue to evolve, the MCS remains a crucial asset in the pursuit of optimized performance and sustainability, providing a reliable solution to meet the demanding cooling needs of modern IT infrastructure.