Chapter 8 Tutorial

Measurement Fundamentals

Thermocouple Measurements A thermocouple converts temperature to voltage. When two wires composed of dissimilar metals are joined,

a voltage is generated. The voltage is a function of the junction temperature and the types of metals in the thermocouple wire. Since the temperature characteristics of many dissimilar metals are well known, a conversion from the voltage generated to the temperature of the junction can be made. For example, a voltage measurement of a T-type thermocouple (made of copper and constantan wire) might look like this:

Internal DMM

Notice, however, that the connections made between the thermocouple wire and the internal DMM make a second, unwanted thermocouple where the constantan (C) lead connects to the internal DMM’s copper (Cu) input terminal. The voltage generated by this second thermocouple affects the voltage measurement of the T-type thermocouple.

If the temperature of the thermocouple created at J2 (the LO input terminal) is known, the temperature of the T-type thermocouple can be calculated. One way to do this is to connect two T-type thermocouples together to create only copper-to-copper connections at the internal DMM’s input terminals, and to hold the second thermocouple at a known temperature.

8

347

Page 349
Image 349
Agilent Technologies 34970A manual Internal DMM

34970A specifications

Agilent Technologies 34970A is a versatile data acquisition and measurement system that has gained popularity in various industries, including research and development, manufacturing, and education. The primary purpose of the 34970A is to offer an efficient solution for data collection, monitoring, and analysis, which can significantly enhance productivity and accuracy in testing applications.

One of the main features of the 34970A is its modular design, allowing users to customize the system according to their specific measurement needs. The mainframe can accommodate up to three plug-in measurement modules, which can include various types of measurements such as analog, digital, temperature, and frequency. This modularity provides flexibility for users to tailor the system to their requirements, making it highly adaptable to different applications.

Another notable characteristic of the Agilent 34970A is its impressive channel configuration. The system can support up to 120 measurement channels when fully configured, enabling extensive data acquisition without the need for multiple devices. This capability is essential for applications requiring simultaneous monitoring of multiple parameters or locations.

The 34970A utilizes advanced signal processing technologies to ensure high-accuracy measurements. The internal 6.5-digit resolution multimeter provides precise readings, while the device also supports various input types, such as thermocouples and RTDs for temperature measurements. The ability to perform mathematical functions, such as summation and averaging, on the acquired data further enhances its usability.

For data storage and management, the Agilent 34970A features built-in memory for storing up to 20,000 readings. Users can also easily transfer data to a PC through the RS-232 interface or GPIB (IEEE 488) for further analysis and reporting. Additionally, it offers the capability to program automatic data logging and scheduling of measurements, which streamlines the testing process and reduces manual intervention.

In terms of user interface, the 34970A is equipped with a large graphical display that provides clear visualization of measurement data and easy navigation through settings and options. The menu-driven interface makes it accessible for users of all skill levels, simplifying the setup and operation of the device.

Overall, the Agilent Technologies 34970A stands out for its modularity, high channel capacity, advanced measurement technologies, and user-friendly interface. As a reliable and efficient data acquisition system, it is well-suited for a wide range of applications, making it an essential tool for engineers and technicians looking to enhance measurement precision and efficiency.