Chapter 8 Tutorial

Measurement Fundamentals

Sources of Error in Thermocouple Measurements

Reference Junction Error A thermocouple is typically formed by welding or soldering two wires together to make the junction. Soldering introduces a third metal into the junction. Provided that both sides of the thermocouple are at the same temperature, the third metal has little effect.

Commercial thermocouples are welded using a capacitive-discharge technique. This technique is used to prevent overheating of the thermocouple wire near the junction and to prevent the diffusion of the welding gas and atmosphere into the thermocouple wire.

A poor weld or bad solder connection can also cause errors in a thermocouple measurement. Open thermocouple junctions can be detected by checking the resistance of the thermocouple. A resistance measurement of more than 5 ktypically indicates a defective thermocouple. The 34970A contains a built-in, automatic thermocouple check feature. If you enable this feature, the instrument measures the channel resistance after each thermocouple measurement to ensure a proper connection. For more information on using the thermocouple check feature, see page 107.

Diffusion Error Diffusion in a thermocouple wire is the process of changing the alloy type along the wire itself. Atmospheric particles can actually diffuse into the metal. These changes in the wire alloy introduce small voltage changes in the measurement. Diffusion is caused by exposure to high temperatures along the wire or by physical stress to the wire such as stretching or vibration.

Temperature errors due to diffusion are hard to detect since the thermocouple will still respond to temperature changes and give nearly correct results. The diffusion effects are usually detected as a drift in the temperature measurements.

Replacing a thermocouple which exhibits a diffusion error may not correct the problem. The extension wire and connections are all subject to diffusion. Examine the entire measurement path for signs of temperature extremes or physical stress. If possible, keep the temperature gradient across the extension wire to a minimum.

352

Page 354
Image 354
Agilent Technologies 34970A manual Sources of Error in Thermocouple Measurements

34970A specifications

Agilent Technologies 34970A is a versatile data acquisition and measurement system that has gained popularity in various industries, including research and development, manufacturing, and education. The primary purpose of the 34970A is to offer an efficient solution for data collection, monitoring, and analysis, which can significantly enhance productivity and accuracy in testing applications.

One of the main features of the 34970A is its modular design, allowing users to customize the system according to their specific measurement needs. The mainframe can accommodate up to three plug-in measurement modules, which can include various types of measurements such as analog, digital, temperature, and frequency. This modularity provides flexibility for users to tailor the system to their requirements, making it highly adaptable to different applications.

Another notable characteristic of the Agilent 34970A is its impressive channel configuration. The system can support up to 120 measurement channels when fully configured, enabling extensive data acquisition without the need for multiple devices. This capability is essential for applications requiring simultaneous monitoring of multiple parameters or locations.

The 34970A utilizes advanced signal processing technologies to ensure high-accuracy measurements. The internal 6.5-digit resolution multimeter provides precise readings, while the device also supports various input types, such as thermocouples and RTDs for temperature measurements. The ability to perform mathematical functions, such as summation and averaging, on the acquired data further enhances its usability.

For data storage and management, the Agilent 34970A features built-in memory for storing up to 20,000 readings. Users can also easily transfer data to a PC through the RS-232 interface or GPIB (IEEE 488) for further analysis and reporting. Additionally, it offers the capability to program automatic data logging and scheduling of measurements, which streamlines the testing process and reduces manual intervention.

In terms of user interface, the 34970A is equipped with a large graphical display that provides clear visualization of measurement data and easy navigation through settings and options. The menu-driven interface makes it accessible for users of all skill levels, simplifying the setup and operation of the device.

Overall, the Agilent Technologies 34970A stands out for its modularity, high channel capacity, advanced measurement technologies, and user-friendly interface. As a reliable and efficient data acquisition system, it is well-suited for a wide range of applications, making it an essential tool for engineers and technicians looking to enhance measurement precision and efficiency.