World Class 3000

Instruction Manual

IB-106-300NH Rev. 4.3 May 2005

After selecting the probe mounting location, provision should be made for a platform where the probe can be easily serviced. The intelligent field transmitter (IFT) can be located up to 150 ft (45 m) cabling distance from the probe when used without optional heater power supply (HPS). When the sys- tem includes the optional HPS, the HPS can be located up to 150 ft (45 m) cabling dis- tance from the probe and the IFT may be located up to 1200 ft (364 m) cabling dis- tance from the HPS.

A source of instrument air is required at the probe for reference air use. Since the probe is equipped with an in-place calibration feature, provision should be made for con-

necting calibration gas tanks to the oxygen analyzer when the probe is to be calibrated.

If the calibration gas bottles will be perma- nently hooked up, a check valve is required next to the calibration fittings on the probe junction box. This is to prevent breathing of calibration gas line and subsequent flue gas condensation and corrosion. The check valve is in addition to the stop valve in the calibration gas kit or the solenoid valve in the multiprobe calibration gas sequencer units.

An optional Z-purge arrangement is avail- able for applications where hazardous area classification may be required (See Appli- cation Data Bulletin AD 106-300B).

Rosemount Analytical Inc. A Division of Emerson Process Management

Description and Specifications 1-7

Page 35
Image 35
Emerson 3000 instruction manual World Class

3000 specifications

The Emerson 3000 is a cutting-edge control system designed to enhance the efficiency, reliability, and precision of industrial operations. Employed across various sectors such as oil and gas, pharmaceutical, food and beverage, and power generation, the Emerson 3000 has gained recognition for its robustness and versatility.

One of the main features of the Emerson 3000 is its advanced process control capability. With integrated control algorithms, it can optimize complex processes in real-time, resulting in significant improvements in production rates and reduced operational costs. The system's predictive analytics capabilities enable operators to anticipate equipment failures and maintenance needs, allowing for proactive management and minimizing downtime.

The Emerson 3000 features a modular architecture, providing flexibility for scaling and customization. Operators can easily tailor the system to fit specific application needs, whether it requires additional control loops or integration with other systems. This adaptability is particularly beneficial for facilities planning for future expansions or modifications.

Another technology highlight of the Emerson 3000 is its seamless integration with the latest Internet of Things (IoT) advancements. The system is designed to communicate effectively with a variety of smart devices and sensors, harnessing data to create insightful analytics that drive operational excellence. This connectivity empowers businesses to leverage big data for improved decision-making and increased agility.

Additionally, the Emerson 3000 incorporates state-of-the-art cybersecurity measures to safeguard critical data and operations. With built-in security protocols and regular updates, the system protects against emerging cyber threats, ensuring the integrity of the control network.

User experience is also a focal point of the Emerson 3000. The intuitive graphical user interface presents complex data in a user-friendly format, making it easier for operators to monitor system performance and respond to alerts quickly. This ease of use contributes to enhanced safety and operational efficiency.

In summary, the Emerson 3000 represents a fusion of advanced process control, modular design, IoT connectivity, robust cybersecurity, and user-centric interface, making it an ideal choice for industries seeking to enhance their operational performance while adapting to ever-evolving technological landscapes.