3.4 Maintenance, Diagnostic Commands

Note:

Depending on the setting in the IDD, if done using the START/STOP command, it is necessary to issue the START command after issuing his command. See the description of the motor starting modes in Section 5.3.2 of the “Product Manual” concerning the setting terminal.

(5)Mode = 0, 1, 0, 1 : Microcode download, with saving

In this mode, the controller’s microcode or control information is transferred to the IDD’s control memory area and written to the disk. “0” must be specified in the “Buffer ID” field and the “Buffer address” field.

The "Transfer byte length" field specifies the total number of transfer bytes of data transferred from the INIT.

When all the data have been received, the IDD writes the new microcode to the disk’s system area and operates in accordance with this microcode until new microcode is downloaded.

Note:

When abnormal termination for reasons other than ILLEGAL REQUEST [=5] / Invalid field in CDB [=24-00] or ILLEGAL REQUEST [=5] / Invalid field in parameter list [=26-00] occurs, the IDD indicates that downloading of the new microcode failed, and it is therefore necessary for the INIT to quickly download the new microcode.

When downloading of microcode is completed, the IDD generates a UNIT ATTENTION condition for all the INITs except the INIT that issued the WRITE BUFFER command. At this time, the sense code indicates “Microcode has been changed [=3F-01].”

(6)Mode = 0, 1, 1, 0 : Microcode Download with offsets, without saving

In this mode the INIT may split the transfer of the controller's microcode or control information over two or more WRITE BUFFER commands.

If the last WRITE BUFFER command of a set of one or more commands completes successfully, the microcode or control information shall be transferred to the control memory space of the IDD.

Since the download microcode or control information may be sent using several commands, when the IDD detects the last download microcode with offsets, the IDD shall perform the verification of the complete set of downloaded microcode or control information prior to returning GOOD status for the last command. After the last command completes successfully the IDD generates a unit attention condition for all INITs except the one that issued the set of WRITE BUFFER commands. When reporting the unit attention condition, the IDD sets the additional sense code to MICROCODE HAS BEEN CHANGED.

"0" must be specified in the "Buffer ID" field.

The microcode or control information is written to the logical unit buffer starting at the location specified by the BUFFER Address field. If the IDD is unable to accept the specified buffer address, it shall return CHECK CONDITION status and it shall set the sense key to ILLEGAL REQUEST [=5] with an additional sense code of INVALID FIELD IN CDB [=24-00].

C141-E167

3 - 105

Page 167
Image 167
Fujitsu MAS3735, MAP3367, MAP3147, MAP3735, MAS3367 specifications Maintenance, Diagnostic Commands

MAP3735, MAP3147, MAS3367, MAP3367, MAS3735 specifications

Fujitsu, a renowned leader in technology and innovation, has developed a variety of reliable hard disk drives (HDDs) that cater to a wide range of data storage needs. Among these, the MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series stand out for their advanced features and exceptional performance.

The MAS3735 is a high-capacity enterprise-class drive that boasts a storage capacity of up to 300 GB. Its 10,000 RPM spindle speed ensures rapid data retrieval and efficient performance, making it ideal for data-intensive applications. It utilizes a Serial Attach SCSI (SAS) interface, which allows for improved data transfer rates and increased reliability compared to traditional SATA drives. The drive is designed with advanced technologies such as error recovery and data integrity features, ensuring the safety and security of critical data.

Similarly, the MAP3367 and MAS3367 models are geared towards both enterprise and mid-range server environments, providing a storage capacity of up to 300 GB as well. These drives also operate at a spindle speed of 15,000 RPM, offering swift access times that enhance overall system performance. The MAP3367 employs the Ultra 320 SCSI interface, allowing for significant bandwidth and ensuring data is transmitted efficiently.

On the other hand, both MAP3147 and MAP3735 models provide versatile solutions for various applications, supporting capacities from 36 GB to 147 GB. The MAP3147, with its 10,000 RPM speed, is optimized for workloads requiring quick access and high throughput, making it suitable for transactional systems and enterprise applications. The MAP3735, while offering comparable capacity, emphasizes exceptional reliability and durability, which is crucial for environments that involve heavy data loads.

All these Fujitsu HDDs are characterized by their robust construction, reliability, and efficiency. They are built to withstand heavy workloads and are equipped with features like advanced thermal management and acoustic noise reduction, ensuring they operate effectively in data center environments.

In conclusion, Fujitsu's MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series HDDs are designed for high performance and reliability, catering to both enterprise and mid-range environments. Their advanced features make them a strong choice for businesses looking to enhance their storage solutions while maintaining data integrity and system performance.