Command Specifications

The "Transfer Byte Length" field specifies the maximum number of bytes that shall be present in the Data-Out Buffer to be stored in the specified buffer beginning at the buffer offset. The INIT should attempt to ensure that the parameter list length plus the buffer offset does not exceed the capacity of the specified buffer. (The capacity of the buffer may be determined by the BUFFER CAPACITY field in the READ BUFFER descriptor.) If the BUFFER Address and Transfer Byte Length fields specify a transfer in excess of the buffer capacity, the IDD shall return CHECK CONDITION status and shall set the sense key to ILLEGAL REQUEST [=5] with an additional sense code of INVALID FIELD IN CDB [=24-00].

(7)Mode = 0, 1, 1, 1 : Microcode Download with offset, with saving

In this mode the INIT may split the transfer of the controller's microcode or control information over two or more WRITE BUFFER commands.

If the last WRITE BUFFER command of a set of one or more commands completes successfully, the microcode or control information shall be saved in a non-volatile memory space.

Since the downloaded microcode or control information may be sent using several commands, when the IDD detects the last download microcode with offsets and save mode WRITE BUFFER command has been received, the IDD shall perform the verification of the complete set of downloaded microcode or control information prior to returning GOOD status for the last command. After the last command completes successfully the IDD generates a unit attention condition for all INITs except the one that issued the set of WRITE BUFFER commands. When reporting the unit attention condition, the IDD sets the additional sense code to MICROCODE HAS BEEN CHANGED.

The microcode or control information is written to the logical unit buffer starting at the location specified by the BUFFER Address field. If the IDD is unable to accept the specified buffer offset, it shall return CHECK CONDITION status and it shall set the sense key to ILLEGAL REQUEST [=5] with an additional sense code of INVALID FIELD IN CDB [=24-00].

(8)Mode = 1, 0, 1, 0 : Echo buffer

In this mode the IDD transfers data from the INIT and stores it in the echo buffer. The BUFFER ID and BUFFER OFFSET fields are ignored in this mode.

3 - 106

C141-E167

Page 168
Image 168
Fujitsu MAP3735, MAP3367, MAP3147, MAS3735, MAS3367 specifications Command Specifications

MAP3735, MAP3147, MAS3367, MAP3367, MAS3735 specifications

Fujitsu, a renowned leader in technology and innovation, has developed a variety of reliable hard disk drives (HDDs) that cater to a wide range of data storage needs. Among these, the MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series stand out for their advanced features and exceptional performance.

The MAS3735 is a high-capacity enterprise-class drive that boasts a storage capacity of up to 300 GB. Its 10,000 RPM spindle speed ensures rapid data retrieval and efficient performance, making it ideal for data-intensive applications. It utilizes a Serial Attach SCSI (SAS) interface, which allows for improved data transfer rates and increased reliability compared to traditional SATA drives. The drive is designed with advanced technologies such as error recovery and data integrity features, ensuring the safety and security of critical data.

Similarly, the MAP3367 and MAS3367 models are geared towards both enterprise and mid-range server environments, providing a storage capacity of up to 300 GB as well. These drives also operate at a spindle speed of 15,000 RPM, offering swift access times that enhance overall system performance. The MAP3367 employs the Ultra 320 SCSI interface, allowing for significant bandwidth and ensuring data is transmitted efficiently.

On the other hand, both MAP3147 and MAP3735 models provide versatile solutions for various applications, supporting capacities from 36 GB to 147 GB. The MAP3147, with its 10,000 RPM speed, is optimized for workloads requiring quick access and high throughput, making it suitable for transactional systems and enterprise applications. The MAP3735, while offering comparable capacity, emphasizes exceptional reliability and durability, which is crucial for environments that involve heavy data loads.

All these Fujitsu HDDs are characterized by their robust construction, reliability, and efficiency. They are built to withstand heavy workloads and are equipped with features like advanced thermal management and acoustic noise reduction, ensuring they operate effectively in data center environments.

In conclusion, Fujitsu's MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series HDDs are designed for high performance and reliability, catering to both enterprise and mid-range environments. Their advanced features make them a strong choice for businesses looking to enhance their storage solutions while maintaining data integrity and system performance.