Parameter Data Formats

c. Parameters specifying sector format (bytes 12 to 19)

Data byte length/physical sectors

This parameter specifies the data length per 1 physical sector as the number of bytes. In the IDD, the data byte length per 1 physical sector is the same as the data byte length in 1 logical data block. The INIT can specify the value of this parameter at 0 or 512 to 528 bytes (4-byte boundary).

If a value less than 512 bytes, the IDD sets a byte length of 512. If more than 528 bytes is specified, the IDD performs rounding processing and sets a byte length of 528. If an odd number of bytes is specified within the specified range, the IDD performs rounding up processing. If the above rounding processing is performed, the IDD reports the CHECK CONDITION status (RECOVERED ERROR [=1] / Rounded parameter [37-00] for that command.

If 0 is specified in this parameter, the value calculated based on the value of the "Data block length" in the block descriptor is used as this parameter value.

When both this page descriptor and the block descriptor are specified by the same MODE SELECT command, and a nonzero value is specified in this parameter which differs from the value in the "Data block length" parameter in the block descriptor, the value specified in the block descriptor has priority.

Interleave factor

This parameter field has meaning only with the MODE SENSE and MODE SENSE EXTENDED commands. The interleave factor (in the IDD, this is always X '0001' :non interleave) of the disk drive's current data format. The value specified in this field is disregarded in the MODE SELECT and MODE SELECT EXTENDED commands.

Track skew factor

This parameter indicates the number of physical sectors existing between the data block with the highest order logical block address on a track and the data block with the next logical block address on the next track of the same cylinder (track skew). This parameter cannot be changed. The IDD disregards the value specified in this field and sets the optimum track skew value in the specified data block length. See Chapter 3, "Data Format" in the Product Manual for details about track skew. This parameter indicates the value of zone specified in active notch of Page C. If it is 0, this parameter indicates the value in zone 0.

Cylinder skew factor

This parameter indicates the number of physical sectors existing between the data block with the highest order logical block address in a cylinder and the data block with the next logical block address in the next cylinder (cylinder skew). This parameter cannot be changed. The IDD disregards the value specified in this field and sets the optimum cylinder skew value in the specified data block length. See Chapter 3, "Data Format" in the Product Manual for details about cylinder skew. This parameter indicates the value of zone specified in active notch of Page C. If it is 0, this parameter indicates the value in zone 0.

d. Parameters related to device type (byte 20)

SSEC (soft sectoring)

When this bit is "1," it indicates that the data formatting method on the disk media is "soft sectoring." However, since the IDD uses only the "hard sectoring" method (refer to previously shown item b), this bit is disregarded. Furthermore, it is impossible to change this parameter.

4 - 16

C141-E167

Page 192
Image 192
Fujitsu MAS3735, MAP3367, MAP3147, MAP3735, MAS3367 specifications Parameter Data Formats

MAP3735, MAP3147, MAS3367, MAP3367, MAS3735 specifications

Fujitsu, a renowned leader in technology and innovation, has developed a variety of reliable hard disk drives (HDDs) that cater to a wide range of data storage needs. Among these, the MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series stand out for their advanced features and exceptional performance.

The MAS3735 is a high-capacity enterprise-class drive that boasts a storage capacity of up to 300 GB. Its 10,000 RPM spindle speed ensures rapid data retrieval and efficient performance, making it ideal for data-intensive applications. It utilizes a Serial Attach SCSI (SAS) interface, which allows for improved data transfer rates and increased reliability compared to traditional SATA drives. The drive is designed with advanced technologies such as error recovery and data integrity features, ensuring the safety and security of critical data.

Similarly, the MAP3367 and MAS3367 models are geared towards both enterprise and mid-range server environments, providing a storage capacity of up to 300 GB as well. These drives also operate at a spindle speed of 15,000 RPM, offering swift access times that enhance overall system performance. The MAP3367 employs the Ultra 320 SCSI interface, allowing for significant bandwidth and ensuring data is transmitted efficiently.

On the other hand, both MAP3147 and MAP3735 models provide versatile solutions for various applications, supporting capacities from 36 GB to 147 GB. The MAP3147, with its 10,000 RPM speed, is optimized for workloads requiring quick access and high throughput, making it suitable for transactional systems and enterprise applications. The MAP3735, while offering comparable capacity, emphasizes exceptional reliability and durability, which is crucial for environments that involve heavy data loads.

All these Fujitsu HDDs are characterized by their robust construction, reliability, and efficiency. They are built to withstand heavy workloads and are equipped with features like advanced thermal management and acoustic noise reduction, ensuring they operate effectively in data center environments.

In conclusion, Fujitsu's MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series HDDs are designed for high performance and reliability, catering to both enterprise and mid-range environments. Their advanced features make them a strong choice for businesses looking to enhance their storage solutions while maintaining data integrity and system performance.