6.2 Disk Media Initialization

6.2.2Re-initialization

The INIT can reinitialize the disk drive after it has been operated using the FORMAT UNIT command.

Note:

If it is necessary after reinitialization to restore the data that were stored on the disk media, it is necessary to save the data before executing reinitialization, then execute data restore using system software after reinitialization.

The INIT can change the size of the spare sector area and its location as well as the number of logical data blocks before reinitialization. The recommended procedure for reinitialization is shown below. However, in cases where the logical data block length is changed, the initialization procedure described in Section 6.2.1 must be followed during installation.

(1)MODE SELECT command

If the logical data block count (size of the User Space) or the size of the spare sector area and its location are changed, issue the MODE SELECT EXTENDED command and specify the disk media format attributes. The parameter specification method is the same as in the case of initialization processing during installation, described in Section 6.2.1. If the same format attributes as at present will continue to be used, it is not necessary to issue the MODE SELECT EXTENDED command.

(2)FORMAT UNIT command

Issue the FORMAT UNIT command in either of the following two formats and initialize the entire disk media surface.

a)Specify "1" in the "FmtData" bit, "0" in the "CmpLst" bit and "000" in the "Defect List Format" field. Also, prepare only a 4-byte header, specify "0" in the "FOV," "DPRY," "DCRT" and "STPF" bits and zero in the "Defect List Length" field.

In this FORMAT UNIT command, the entire disk media surface is initialized using the P List and the previously existing G List, then after initialization, the data blocks are verified. If any defective blocks are detected in the Verify operation, alternate blocks are allocated for those data blocks. Also, the previously existing G List is saved, and the defect position information for the defective data blocks detected in the Verify operation is added to the G List. During initialization, alternate blocks for which sector slip processing was applied for previously known defects are reallocated, so optimization of the logical data block locations on the disk media can be expected.

b)Specify "0" in the "FmtData" bit and in the "CmpLst" bit and "000" in the "Defect List Format" field. In this case, specification of the format parameters is not necessary.

In this FORMAT UNIT command, the disk media is initialized using only the P List, then after initialization, the data blocks are verified. If any defective blocks are detected in the Verify operation, alternate blocks are allocated for those data blocks. Also, the previously existing G List is erased and defect position information for the defective data blocks detected in the Verify operation is recorded in a new G List.

C141-E167

6 - 5

Page 265
Image 265
Fujitsu MAP3367, MAP3147, MAS3735, MAP3735, MAS3367 specifications Re-initialization

MAP3735, MAP3147, MAS3367, MAP3367, MAS3735 specifications

Fujitsu, a renowned leader in technology and innovation, has developed a variety of reliable hard disk drives (HDDs) that cater to a wide range of data storage needs. Among these, the MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series stand out for their advanced features and exceptional performance.

The MAS3735 is a high-capacity enterprise-class drive that boasts a storage capacity of up to 300 GB. Its 10,000 RPM spindle speed ensures rapid data retrieval and efficient performance, making it ideal for data-intensive applications. It utilizes a Serial Attach SCSI (SAS) interface, which allows for improved data transfer rates and increased reliability compared to traditional SATA drives. The drive is designed with advanced technologies such as error recovery and data integrity features, ensuring the safety and security of critical data.

Similarly, the MAP3367 and MAS3367 models are geared towards both enterprise and mid-range server environments, providing a storage capacity of up to 300 GB as well. These drives also operate at a spindle speed of 15,000 RPM, offering swift access times that enhance overall system performance. The MAP3367 employs the Ultra 320 SCSI interface, allowing for significant bandwidth and ensuring data is transmitted efficiently.

On the other hand, both MAP3147 and MAP3735 models provide versatile solutions for various applications, supporting capacities from 36 GB to 147 GB. The MAP3147, with its 10,000 RPM speed, is optimized for workloads requiring quick access and high throughput, making it suitable for transactional systems and enterprise applications. The MAP3735, while offering comparable capacity, emphasizes exceptional reliability and durability, which is crucial for environments that involve heavy data loads.

All these Fujitsu HDDs are characterized by their robust construction, reliability, and efficiency. They are built to withstand heavy workloads and are equipped with features like advanced thermal management and acoustic noise reduction, ensuring they operate effectively in data center environments.

In conclusion, Fujitsu's MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series HDDs are designed for high performance and reliability, catering to both enterprise and mid-range environments. Their advanced features make them a strong choice for businesses looking to enhance their storage solutions while maintaining data integrity and system performance.