Fujitsu MAS3735, MAP3367, MAP3147, MAP3735, MAS3367 Alternate Block Allocation Processing

Models: MAP3735 MAP3147 MAS3367 MAP3367 MAS3735

1 290
Download 290 pages 28.72 Kb
Page 267
Image 267

6.4 Alternate Block Allocation Processing

(3)Reading and verification of data

Issue the READ, READ EXTENDED or VERIFY command and verify that the data written to the disk media in item (2) were read correctly.

To verify reading of data, it is recommended that reading of the same data block be done at lease 2 times, but the number of times verification is performed is determined by the conditions on the system. If reading of all data is completed normally, it can be recognized that use of that data block can be used normally.

(4)Error verification

When an error related to the disk media (Sense Key = 3: MEDIUM ERROR) occurs during writing of the data pattern (see item (2)) or verification of data reading (see item (3)), reexecute the rewriting and reading verification combination (two times) at least 8 times.

When the same type of error occurs even once during reexecution, it is recommended that the INIT treat that data block as a defective block. If the reexecution of verification is completed normally every time, it should be regarded that that data block can be used normally.

6.4Alternate Block Allocation Processing

If errors on the disk media which cannot be recovered from are detected, or if a recoverable error occurs repeatedly in the same data block, it is necessary for the INIT to allocate an alternate block for the data block where the error occurred using the REASSIGN BLOCKS command. The procedure for alternate block processing is shown below.

Note:

An attempt will be made to copy the contents of the data area of the logical data block specified in the "Defect Data" list to the alternate block allocated by this command, but in some cases, the data cannot be copied. Confirmation of the contents of data in the allocated alternate block, saving of data before issuing this command and restoring of data after executing this command are the responsibility of the INIT.

1)Verify data blocks in accordance with the procedure in Section 6.3 for data blocks where error occur. When such a data block is judged to be normal, alternate block allocation need not be implemented. In this case, rewrite the original data to that data block if necessary. When the data block is judged to be defective, implement the processing in item 2) and after.

2)Specify a logical block address for a data block which is judged to be defective and issue the REASSIGN BLOCKS command.

3)If the REASSIGN BLOCKS command is terminated normally, verify that logical data block according to the procedure in Section 6.3. If that data block is judged to be correct, allocate an alternate block and terminate processing. When the data block is judged to be defective, return to 2) and issue the REASSIGN BLOCKS command again, then try reallocating another alternate block for that logical data block.

C141-E167

6 - 7

Page 267
Image 267
Fujitsu MAS3735, MAP3367, MAP3147, MAP3735, MAS3367 specifications Alternate Block Allocation Processing

MAP3735, MAP3147, MAS3367, MAP3367, MAS3735 specifications

Fujitsu, a renowned leader in technology and innovation, has developed a variety of reliable hard disk drives (HDDs) that cater to a wide range of data storage needs. Among these, the MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series stand out for their advanced features and exceptional performance.

The MAS3735 is a high-capacity enterprise-class drive that boasts a storage capacity of up to 300 GB. Its 10,000 RPM spindle speed ensures rapid data retrieval and efficient performance, making it ideal for data-intensive applications. It utilizes a Serial Attach SCSI (SAS) interface, which allows for improved data transfer rates and increased reliability compared to traditional SATA drives. The drive is designed with advanced technologies such as error recovery and data integrity features, ensuring the safety and security of critical data.

Similarly, the MAP3367 and MAS3367 models are geared towards both enterprise and mid-range server environments, providing a storage capacity of up to 300 GB as well. These drives also operate at a spindle speed of 15,000 RPM, offering swift access times that enhance overall system performance. The MAP3367 employs the Ultra 320 SCSI interface, allowing for significant bandwidth and ensuring data is transmitted efficiently.

On the other hand, both MAP3147 and MAP3735 models provide versatile solutions for various applications, supporting capacities from 36 GB to 147 GB. The MAP3147, with its 10,000 RPM speed, is optimized for workloads requiring quick access and high throughput, making it suitable for transactional systems and enterprise applications. The MAP3735, while offering comparable capacity, emphasizes exceptional reliability and durability, which is crucial for environments that involve heavy data loads.

All these Fujitsu HDDs are characterized by their robust construction, reliability, and efficiency. They are built to withstand heavy workloads and are equipped with features like advanced thermal management and acoustic noise reduction, ensuring they operate effectively in data center environments.

In conclusion, Fujitsu's MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series HDDs are designed for high performance and reliability, catering to both enterprise and mid-range environments. Their advanced features make them a strong choice for businesses looking to enhance their storage solutions while maintaining data integrity and system performance.