4.1 Mode Parameters

a.Parameters for specifying alternate processing areas for defective blocks (bytes 2 to 9)

The following 4 parameters specify the position and number of spare sectors for performing defective block alternate allocation processing on the disk media. See Chapter 3, "Data Format" of Product Manual for details of the IDD's alternate block processing.

Track count/zone

This parameter specifies the number of tracks a unit for alternating blocks. The INIT cannot clearly specify this value. The IDD ignores the specification for this bit. If the value of the Active Notch in Page C is 0, the “Number of tracks a cell” is reported for the MODE SENSE and MODE SENSE EXTENDED commands.

If not, the total number of track of the zone which is specified as the Active Notch is reported.

Alternate sector count/zone

This parameter specifies the number of sectors per one cell as the number of spare sectors secured for use as alternate blocks. In the IDD, this parameter indicates the number of spare sectors secured in each cell. The maximum permissible value of this parameter either the "number of physical sectors per track in the last cell - 1" or "84", whichever is smaller. It is possible for the INIT to vary this parameter within a range of 0 to the maximum permissible value. When a value which exceeds the maximum permissible value is specified, the IDD performs rounding down of the parameter and sets a value equal to this parameter's maximum permissible value. If the above rounding processing is performed, a CHECK CONDITION status (RECOVERED ERROR [= 1] / Rounded parameter [37-00] is reported for that command.

Alternate track count / zone

This parameter specifies the area secured for alternate blocks as the number of tracks per one cell. It is impossible to change this parameter. When a value other than zero is specified in this field, the IDD performs rounding down processing of this parameter and always sets this parameter value at zero.

Alternate track count / drive

This parameter specifies the area secured for alternate blocks as the number of tracks per disk drive. In the IDD, this parameter indicates the number of tracks in the spare area secured as alternate cells. This value is fixed at a value that equals the number of tracks per cylinder multiplied by the number of zones in the IDD. This parameter cannot be changed by the INIT.

b. Parameters specifying track format (bytes 10, 11)

Sector count/track

This parameter specifies the number of physical sectors per 1 track. In the IDD, the number of physical sectors in a track is set unilaterally according to the data format specified by the "Data Block Length" parameter in the block descriptor or the "Data byte length/Physical sector" parameter in this page descriptor, so this parameter cannot be changed. The IDD disregards the value specified in this field. This parameter indicates the value of zone specified in Active Notch of Page C. If it is 0, this parameter indicates the value in zone 0.

C141-E167

4 - 15

Page 191
Image 191
Fujitsu MAP3147, MAP3367, MAS3735, MAP3735, MAS3367 specifications Mode Parameters

MAP3735, MAP3147, MAS3367, MAP3367, MAS3735 specifications

Fujitsu, a renowned leader in technology and innovation, has developed a variety of reliable hard disk drives (HDDs) that cater to a wide range of data storage needs. Among these, the MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series stand out for their advanced features and exceptional performance.

The MAS3735 is a high-capacity enterprise-class drive that boasts a storage capacity of up to 300 GB. Its 10,000 RPM spindle speed ensures rapid data retrieval and efficient performance, making it ideal for data-intensive applications. It utilizes a Serial Attach SCSI (SAS) interface, which allows for improved data transfer rates and increased reliability compared to traditional SATA drives. The drive is designed with advanced technologies such as error recovery and data integrity features, ensuring the safety and security of critical data.

Similarly, the MAP3367 and MAS3367 models are geared towards both enterprise and mid-range server environments, providing a storage capacity of up to 300 GB as well. These drives also operate at a spindle speed of 15,000 RPM, offering swift access times that enhance overall system performance. The MAP3367 employs the Ultra 320 SCSI interface, allowing for significant bandwidth and ensuring data is transmitted efficiently.

On the other hand, both MAP3147 and MAP3735 models provide versatile solutions for various applications, supporting capacities from 36 GB to 147 GB. The MAP3147, with its 10,000 RPM speed, is optimized for workloads requiring quick access and high throughput, making it suitable for transactional systems and enterprise applications. The MAP3735, while offering comparable capacity, emphasizes exceptional reliability and durability, which is crucial for environments that involve heavy data loads.

All these Fujitsu HDDs are characterized by their robust construction, reliability, and efficiency. They are built to withstand heavy workloads and are equipped with features like advanced thermal management and acoustic noise reduction, ensuring they operate effectively in data center environments.

In conclusion, Fujitsu's MAS3735, MAP3367, MAS3367, MAP3147, and MAP3735 series HDDs are designed for high performance and reliability, catering to both enterprise and mid-range environments. Their advanced features make them a strong choice for businesses looking to enhance their storage solutions while maintaining data integrity and system performance.