IBM 388, 387, 393, 391, 389, 441, 390, 392 manual About RAID

Models: 392 390 441 388 389 391 393 387

1 210
Download 210 pages 3.89 Kb
Page 84
Image 84

“Configuring RAID using the ThinkServer EasyStartup program” on page 74

“Configuring the onboard SATA software RAID” on page 75

“Configuring the advanced SATA or SAS hardware RAID” on page 80

About RAID

RAID, an acronym for Redundant Array of Independent Disks, is a technology that provides increased storage functions and reliability through redundancy. This is achieved by combining multiple hard disk drives into a logical unit, where data is distributed across the drives in one of several ways called RAID levels.

When a group of independent physical hard disk drives are set up to use RAID technology, they are in a RAID array. This array distributes data across multiple hard disk drives, but the array appears to the host server as one single storage unit. Creating and using RAID arrays provides high performance, such as the expedited I/O performance, because several drives can be accessed simultaneously.

RAID drive groups also improve data storage reliability and fault tolerance compared to single-drive storage systems. Data loss resulting from a drive failure can be prevented by reconstructing missing data from the remaining drives.

The following list describes some of the most commonly used RAID levels:

RAID 0: block-level striping without parity or mirroring

Simple stripe sets are normally referred to as RAID 0. RAID 0 uses striping to provide high data throughput, especially for large files in an environment that does not require fault tolerance. RAID 0 has no redundancy and it provides improved performance and additional storage without fault tolerance. Any drive failure destroys the array and the likelihood of failure increases with more drives in the array. RAID 0 does not implement error checking, so any error is uncorrectable. More drives in the array means higher bandwidth, but greater risk of data loss.

RAID 0 requires a minimum number of two hard disk drives.

RAID 1: mirroring without parity or striping

RAID 1 uses mirroring so that data written to one drive is simultaneously written to another drive. This is good for small databases or other applications that require small capacity but complete data redundancy. RAID 1 provides fault tolerance from disk errors or failures and continues to operate as long as at least one drive in the mirrored set is functioning. With appropriate operating system support, there can be increased read performance and only a minimal write performance reduction.

RAID 1 requires a minimum number of two hard disk drives.

RAID 5: block-level striping with distributed parity

RAID 5 uses disk striping and parity data across all drives (distributed parity) to provide high data throughput, especially for small random access. RAID 5 distributes parity along with the data and requires all drives but one to be present to operate; drive failure requires replacement, but the array is not destroyed by a single drive failure. Upon drive failure, any subsequent read operations can be calculated from the distributed parity so that the drive failure is masked from the end user. The array will have data loss in the event of a second drive failure and is vulnerable until the data that was on the failing drive is rebuilt onto a replacement drive. A single drive failure in the set will result in reduced performance of the entire set until the failing drive has been replaced and rebuilt.

RAID 5 requires a minimum number of three hard disk drives.

72ThinkServer User Guide

Page 84
Image 84
Lenovo 388, 387, 393, 391, 389, 441, 390, 392 manual About RAID