Teledyne API Model 200AU NOX Analyzer Instruction Manual, 02293, Rev. F

7.6.10.2 Precision Check

A periodic check is used to assess the data for precision. A one-point precision check must be carried out at least once every 2 weeks on each analyzer at an NO2 concentration between 0.08 and 0.10 ppm. The analyzer must be operated in its normal sampling mode, and the precision test gas must pass through all filters, scrubbers, conditioners, and other components used during normal ambient sampling. The standards from which precision check test concentrations are obtained must be traceable to NIST-SRM. Those standards used for calibration or auditing may be used.

7.6.10.3 Precision Check Procedure

1.Connect the analyzer to a precision gas that has an NO2 concentration between 0.08 and 0.10 ppm. NO2 precision gas may be generated by either GPT or a NO2 permeation tube. If a precision check is made in conjunction with a zero/span check, it must be made prior to any zero or span adjustments.

2.Allow the analyzer to sample the precision gas until a stable trace is obtained.

3.Record this value. NO and NOx precision checks should also be made if those data are being reported. Information from the check procedure is used to assess the precision of the monitoring data; see Section 2.0.8 (Q.A. Handbook) for procedures for calculating and reporting precision.

7.6.11 Recommended Standards for Establishing Traceability

To assure data of desired quality, two considerations are essential: (1) the measurement process must be in statistical control at the time of the measurement and (2) the systematic errors, when combined with the random variation in the measurement process, must result in a suitably small uncertainty.

Evidence of good quality data includes documentation of the quality control checks and the independent audits of the measurement process by recording data on specific forms or on a quality control chart and by using materials, instruments, and measurement procedures that can be traced to appropriate standards of reference. To establish traceability, data must be obtained routinely by repeated measurements of standard reference samples (primary, secondary, and/or working standards). More specifically, working calibration standards must be traceable to standards of higher accuracy, such as those listed below in Table 7-17.

7-30

Page 112
Image 112
Teledyne 200AU instruction manual Recommended Standards for Establishing Traceability, Precision Check Procedure

200AU specifications

The Teledyne 200AU is a cutting-edge analytical instrument designed primarily for trace and ultra-trace analysis of elements in various liquid samples. Renowned for its reliability and precision, this inductively coupled plasma mass spectrometer (ICP-MS) is widely utilized in environmental monitoring, food safety, clinical diagnostics, and geochemical research.

One of the distinguishing features of the Teledyne 200AU is its exceptional sensitivity, allowing for the detection of elements at concentrations as low as parts per trillion (ppt). This sensitivity is crucial for applications where even minute traces of contaminants can have significant implications. The instrument also boasts a wide dynamic range, accommodating high-concentration samples without compromising accuracy.

The Teledyne 200AU incorporates advanced technologies that enhance its analytical capabilities. At the core of its design is a robust ICP source, which ensures optimal ionization efficiency. The instrument also features a high-resolution quadrupole mass analyzer, which enables precise separation and identification of ions based on their mass-to-charge ratio. This feature is essential for distinguishing between isotopes and analyzing complex mixtures.

Another notable characteristic of the Teledyne 200AU is its user-friendly interface, which simplifies the operation and data management processes. The software is intuitive, offering sophisticated data processing algorithms that streamline analysis. Users can easily access real-time data visualization, facilitating timely decision-making based on analytical results.

The instrument is built with durability in mind, featuring a compact design that allows for easy integration into various laboratory environments. The Teledyne 200AU is also equipped with state-of-the-art safety features, including enhanced cooling systems and automated shutdown protocols to protect both the instrument and the user.

Moreover, the Teledyne 200AU supports a variety of sample introduction methods, including nebulization and laser ablation, providing flexibility to accommodate different types of samples and experimental needs. Its multi-element capability further enhances its versatility, allowing simultaneous detection of multiple elements in a single analysis.

In summary, the Teledyne 200AU stands out as a premier instrument in the field of mass spectrometry. Its combination of high sensitivity, advanced technology, user-friendly features, and robust design makes it an invaluable tool for scientists and researchers seeking precise elemental analysis across various disciplines.