SERVICING
For the 3rd and 4th heater elements to operate on a second stage heat demand, the PJ4 jumper on the VSTB inside the MBE/AEPF must be cut. With the PJ4 jumper cut, the VSTB will run the blower motor on low speed on a “W1” only demand. If the first stage heat demand, “W1” cannot be satisfied by the heat pump, the temperature indoors will continue to drop. The room thermostat will then energize “W2” and 24Vac will be supplied to HR2 on the heater assembly and the blower motor will change to high speed. When the “W2” demand is satisfied, the room thermostat will remove the 24Vac from “W2” and the VSTB will remove the 24Vac from HR2. The contacts on HR2 will open between 30 to 70 seconds and heater elements #3 and #4 will be turned off and the blower motor will change to low speed. On most digital/ electronic thermostats, “W2” will remain energized until the first stage demand “W1” is satisfied and then the “W1” and “W2” demands will be removed.
2.3When the “W1” heat demand is satisfied, the room thermostat will remove the 24Vac from “E/W1” and the VSTB removes the 24Vac from HR1. The contacts on HR1 will open between 30 to 70 seconds and turn off the heater element(s) and the blower motor ramps down to a complete stop.
MBE/AEPF WITH TWO STAGE ASZ & DSZ HEAT PUMP UNITS
3.0Cooling Operation
When used with the ASZ & DSZ two stage heat pumpS, dip switch #4 must be set to the OFF position on the VSTB inside the MBE/AEPF. The “Y1” output from the indoor thermostat must be connected to the purple wire labeled “Ylow/Y1” inside the wire bundle marked “Thermostat” and the purple wire labeled “Ylow/ Y1” inside the wire bundle marked “Outdoor Unit” must be connected to “Y” at the heat pump. The “Y2” output from the indoor thermostat must be connected to the yellow wire labeled “Y/Y2” inside the wire bundle marked “Ther- mostat” and the yellow wire labeled “Y/Y2” inside the wire bundle marked “Outdoor Unit” must be connected to “Y/ Y2” at the heat pump. The orange jumper wire from terminal “Y1” to terminal “O” on the VSTB inside the MBE/AEPF must be removed.
On heat pump units, when the room thermostat is set to the cooling mode, 24Vac is supplied to terminal “O” of the VSTB inside the MBE unit. The VSTB will supply 24Vac to “O” at the heat pump to energize the reversing valve. As long as the thermostat is set for cooling, the reversing valve will be in the energized position for cooling.
3.1On a demand for cooling, the room thermostat energizes “G” and “Y1” and 24Vac is supplied to “G” and “Ylow/Y1” of the MBE unit. The VSTB inside the MBE will turn on the blower motor and the motor will ramp up to 60% of the speed programmed in the motor based on the settings for dip switch 5 and 6. The VSTB will supply 24Vac to “Y” at the heat pump and the compressor and outdoor fan starts in low speed operation.
3.2If first stage cooling cannot satisfy the demand, the room thermostat will energize “Y2” and supply 24Vac to “Y/ Y2”of the MBE unit. The blower motor will change to the cfm for high speed operation and the VSTB will supply 24Vac to “Y2” at the heat pump. The compressor and outdoor fan will change to high speed operation. When the “Y2” demand is satisfied, the thermostat will remove the “Y2” demand and the VSTB will remove the 24Vac from “Y2” at the heat pump. The blower will drop to 60% of the programmed cfm and the compressor and outdoor fan will change to low speed operation. On most digital/ electronic thermostats, “Y2” will remain energized until the first stage cooling demand “Y1” is satisfied and then the “G”, “Y1” and “Y2” demands will be removed.
3.3When the first stage cooling demand, “Y1”, is satisfied, the room thermostat removes the 24Vac from “G” and “Y1”. The VSTB removes the 24Vac from “Y’ at the heat pump and the compressor and outdoor fan are turned off. The blower motor will ramp down to a complete stop based on the time and rate programmed in the motor.
4.0 Heating Operation
On heat pump units, when the room thermostat is set to the heating mode, the reversing valve is not energized. As long as the thermostat is set for heating, the reversing valve will be in the
4.1On a demand for first stage heat with heat pump units, the room thermostat energizes “G” and “Y1” and 24Vac is supplied to “G” and “Ylo/Y1” of the MBE/AEPF. The VSTB will turn on the blower motor and the motor will ramp up to 60% of the speed programmed in the motor based on the settings of dip switch 1 and 2. The VSTB will supply 24Vac to “Y” at the heat pump. The compressor will start on high speed and outdoor fan will start on low speed on a “Y1” heating demand but the blower motor will deliver only 60% of the programmed cfm for high speed heating operation.
4.2If a thermostat that provides a “Y2” demand in heating is used and first stage heating cannot satisfy the demand, the room thermostat will energize “Y2” and supply 24Vac to “Y/Y2” of the MBE unit. The blower motor will change to the cfm for high speed heating operation and the VSTB will supply 24Vac to “Y/Y2” at the heat pump.
57