Lincoln Electric SVM208-A service manual Correct Welding Position, Side view

Page 27

B-11

OPERATION

B-11

 

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

The function of the covered electrode is much more than simply to carry current to the arc. The electrode is composed of a core metal wire around which has been extruded and baked a chemical covering. The core wire melts into the arc and tiny droplets of molten metal shoot across the arc into the molten pool. The elec- trode provides additional filler metal for the joint to fill the groove or gap between the two pieces of the base metal. The covering also melts or burns in the arc. It has several functions. It makes the arc steadier, pro- vides a shield of smoke-like gas around the arc to keep oxygen and nitrogen in the air away from the molten metal, and provides a flux for the molten pool. The flux picks up impurities and forms a protective slag. The principle differences between the various types of elec- trodes are in their coatings. By varying the coating, it is possible to greatly alter the operating characteristics of electrodes. By understanding the differences in the various coatings, you will gain a better understanding of selecting the best electrode for the job you have at hand. In selecting an electrode, you should consider:

1.The type of deposit you want, e.g., mild steel, stain- less, low alloy, hardfacing.

2.The thickness of the plate you want to weld.

3.The position it must be welded in (downhand, out- of-position).

4.The surface condition of the metal to be welded.

5.Your ability to handle and obtain the desired elec- trode.

Four simple manipulations are of prime importance. Without complete mastery of these four, further attempts at welding are futile. With complete mastery of the four, welding will be easy.

1. The Correct Welding Position

Illustrated is the correct welding position for right-hand- ed people. (For left-handed people it is opposite.)

Whenever possible, weld from left to right (if right- handed). This enables you to see clearly what you are doing.

Hold the electrode at a slight angle as shown in Figure 5.

Figure 5

15-20

 

 

90

side view

end view

Correct Welding Position

2. The Correct Way to Strike An Arc

Be sure the work clamp makes good electrical contact to the work.

Lower your headshield and scratch the electrode slow- ly over the metal, and you will see sparks fly. While scratching, lift the electrode 1/8” (3.2mm) and the arc is established.

NOTE: If you stop moving the electrode while scratch- ing, the electrode will stick. Most beginners try to strike the arc by a fast jabbing motion down on the plate. Result: They either stick their electrode or their motion is so fast that they break the arc immediately.

3. The Correct Arc Length

The arc length is the distance from the tip of the elec- trode core wire to the base metal.

Once the arc has been established, maintaining the correct arc length becomes extremely important. The arc should be short, approximately 1/16 to 1/8” (1.6- 3.2mm) long. As the electrode burns off, the electrode must be fed to the work to maintain correct arc length.

The easiest way to tell whether the arc has the correct length is by listening to its sound. A nice, short arc has a distinctive, “crackling” sound, very much like eggs frying in a pan. The incorrect, long arc has a hollow, blowing or hissing sound.

4. The Correct Welding Speed

The important thing to watch while welding is the pud- dle of molten metal right behind the arc. DO NOT WATCH THE ARC ITSELF. The appearance of the puddle and the ridge where the molten puddle solidi- fies indicates correct welding speed. The ridge should be approximately 3/8” (9.5mm) behind the electrode.

Ridge where puddle solidifies

Molten puddle

Most beginners tend to weld too fast, resulting in a thin, uneven, “wormy” looking bead. They are not watching the molten metal.

IMPORTANT: It is not generally necessary to weave the arc forward, backward or sideways. Weld along at a steady pace, and you will have an easier time.

NOTE: When welding on thin plate, you will find that you have to increase the welding speed, whereas when welding on heavy plate, it is necessary to go more slowly to ensure fusion and penetration.

BULLDOG® 140

Image 27
Contents Bulldog California Proposition 65 Warnings SafetyCan be dangerous Electric Shock can kill ARC Rays can burnWelding and Cutting Sparks can cause fire or explosion Cylinder may explode if damagedIii Sûreté Pour Soudage a L’Arc Précautions DE SûretéSafety Methods of Reducing Emissions Mains Supply Master Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications Bulldog 140 K2708-1 InstallationEngine Exhaust can kill Safety PrecautionsLocation and Ventilation StoringOIL PRE-OPERATION Engine ServiceStacking TiltingElectrical Output CONNEC- Tions Welding Cable ConnectionsTable A.1 Recommended Welding Cable Size and Length Plugs and HAND-HELD Equipment Auxiliary Power ReceptaclesCable Installation Electrical ConnectionsCircuit Breakers Premises WiringBulldog Ation. do not RUN TheseTable of Contents Operation Section Operation Limitations WELDER/GENERATOR ControlsOutput Panel Controls Gasoline Engine Controls Engine OperationStarting the Engine Before Starting the EngineGenerator Operation Table B.1 Generator Power Applications Control Function / Operation Welding OperationLearning To Stick Weld Material Thickness Electrode Type Size SettingWelding Guidelines Stick WeldingWhat Happens in the Arc? Side view Correct Welding PositionButt Joints PracticeUse the following Do the followingPenetration Fillet JointsVertical-Down Welding Vertical-Up WeldingHardfacing To Reduce Wear How to Hardface the Sharp Edge Metal to Ground WearOverhead Welding Welding Sheet MetalCast Iron Plate Preparation Welding Cast IronHigh-Speed Group AWS E6013 Low Hydrogen Group AWS E7018Out-of-Position Group AWS E6011 Bulldog Table of Contents Accessories Section Accessories OPTIONS/ACCESSORIESLincoln Electric Accessories Table of Contents Maintenance Section Maintenance Routine and Periodic Maintenance Engine MaintenanceLocation Return to Section TOC To Section TOC Engine AdjustmentsTable D.1 Engine Maintenance Parts Spark Plug ServiceOperational Clearance Screws Brushes GENERATOR/WELDER MaintenanceFigure D.7. Major Component Locations Bulldog 1TABLE of CONTENTS-THEORY of Operation Section E-1 ENGINE, EXCITATION, Rotor Stator Theory of OperationFigure E.3 Rotor Field Feedback and Auxiliary Power Rotor Field Feedback Auxiliary PowerWeld Winding and Reactor Auxiliary Power Overcurrent Protection1TABLE of Contents Troubleshooting and Repair F-1 HOW to USE Troubleshooting Guide Troubleshooting and RepairPC Board Troubleshooting Procedures Output Problems Perform the Rotor Voltage Test Electric Authorized Field Ser vice FacilityProblems Symptoms Troubleshooting and Repair Perform Field Diode Test Engine Problems Troubleshooting and Repair Engine Throttle Adjustment Test Bulldog Rotor Voltage Test Test DescriptionMaterials Needed Procedure Rotor Voltage TestLead 200A Connection Ground Stud Field Diode Bridge Test + ~ Field Diode Bridge TestRotor Flashing Circuit Test Figure F.3 Brush Holder Leads 201- and 202B + Rotor Flashing Circuit TestMoving Parts can injure Bulldog Rotor Resistance Test Rotor Resistance Test Figure F.6 Brushes Retained with Cable TIE Cable TIE BrushesBulldog Engine Throttle Adjustment Test ROBIN/SUBARU Engine Frequency Counter Method Engine Throttle Adjustment TestROBIN/SUBARU Engine Strobe-tach MethodHigh Speed Stop Screw Scope Settings High Idle no Load Normal Open Circuit Voltage Waveform 115VAC SupplyTypical Weld Output Waveform Machine LoadedMachine Loaded to 125 Amps AT 23 VAC Brush Removal and Replacement Cable TIE Brushes Brush Removal and ReplacementReturn to Section Return to Section TOC Bulldog Rheostat Removal and Replacement Figure F.11 Rheostat Removal Rheostat Removal and ReplacementCapacitor AND/OR Diode Bridge Removal and Replacement Removal and Replacement Procedure Capacitor Removal and ReplacementCapacitor AND/OR Diode Bridge Figure F.13 Field Diode Bridge Location Procedure Field Diode Bridge Removal and ReplacementBulldog Instructions STATOR/ROTOR Removal and ReplacementGeneratorengine STATOR/ROTOR Removal and ReplacementFigure F.15 Generator Components Troubleshooting and Repair Figure F.16 Output Lead Location TIE Wrap Terminals Stator Removal ProcedureNuts Thru Bolts SupportReassembly Procedure Rotor Removal ProcedureFigure F.19 Checking ROTOR-STATOR AIR GAP WELDER/GENERATOR OUTPUT1 Auxiliary Power Receptacle OUTPUT1Retest After Repair Engine OutputBulldog Table of Contents Diagram Section Wiring Diagram Bulldog S28101