American Standard CH530 manual Unit Corrosion Damage, Cleaning the Evaporator

Page 101

Maintenance

Condenser tube fouling is indicated when the approach temperature (the difference between the condensing refrigerant temperature and the leaving condenser water temperature) is higher than predicted.

If the annual condenser tube inspection indicates that the tubes are fouled, two cleaning methods, mechanical and chemical, can be used to rid the tubes of contaminants.

Use the mechanical cleaning method to remove sludge and loose material from smooth-bore tubes.

To clean other types of tubes including internally-enhanced types, consult a qualified service organization for recommendations.

1.Remove the retaining nuts and bolts from the water box covers at each end of the condenser. Use a hoist to lift the covers off the water box. (A threaded connection is provided on each water box cover to allow insertion of an eyebolt).

2.Work a round nylon or brass bristled brush (attached to a rod) in and out of each of the condenser water tubes to loosen the sludge.

3.Thoroughly flush the condenser water tubes with clean water.

Scale deposits are best removed by chemical means. Be sure to consult any qualified chemical house in the area (one familiar with the local water supply’s chemical mineral content) for a recommended cleaning solution suitable for the job. Remember, a standard condenser water circuit is composed solely of copper, cast iron and steel.

CAUTION

Unit Corrosion Damage!

Proper procedures must be followed when using corrosive chemicals to clean water side of unit. It is recommended that the services of a qualified chemical cleaning firm be used. Proper personal protective equipment as recommended by the chemical manufacturer should be used. Refer to the chemicals MSDS sheet for proper safety procedures. Failure to follow proper procedures could result in corrosion damage to the unit and tubes.

IMPORTANT: ALL OF THE

MATERIALS USED IN THE EXTERNAL CIRCULATION SYSTEM, THE QUANTITY OF THE SOLUTION, THE DURATION OF THE CLEANING PERIOD, AND ANY REQUIRED SAFETY PRECAUTIONS SHOULD BE APPROVED BY THE COMPANY FURNISHING THE MATERIALS OR PERFORMING THE CLEANING.

REMEMBER, HOWEVER, THAT WHENEVER THE CHEMICAL TUBE CLEANING METHOD IS USED, IT MUST BE FOLLOWED UP WITH MECHANICAL TUBE CLEANING, FLUSHING AND INSPECTION.

Cleaning the Evaporator

Since the evaporator is typically part of a closed circuit, it does not accumulate appreciable amounts of scale or sludge. Normally, cleaning every 3 years is sufficient. However, on open evaporator systems, such as air washers, periodic inspection and cleaning is recommended.

Control Settings and

Adjustments

Time delays and safety control cutout settings need to be checked annually. For control calibration and check-out, contact a Trane qualified service organization.

CDHF-SVU01C-EN

101

Image 101
Contents X39640670030CDHF-SVU01C-EN Read these carefully Contents Literature change General InformationAbout this manual Unit NameplateGeneral Information = 560 3 stage 935 2 stage Y = 500 3 stage 835 2 stage Control Optional Packages Commonly Used AcronymsGeneral Duplex unit components front view OverviewGeneral Duplex unit components 2 stage compressor Compressor 1 or 2 2 Stage Cooling CyclePressure enthalpy curve 3 stage compressor Pressure enthalpy curve 2 stage compressor DynaView Human Interface TechView Chiller Service ToolSoftware Operation Overview Diagram Power Up DiagramSoftware States Figure Timeline Text FiguresStaging Second Compressor On CDHE/F/G sequence of operation auto to runningSatisfied Setpoint Staging Second Compressor OffCDHF/G sequence of operation lead 1/lag CDHE/F/G sequence of operation lead 2 lag Fixed Sequence Compressor 2 / CompressorCDHF/G sequence of operation equalize starts and hours Sequencing Balanced Starts and HoursCDHF/G sequence of operation combined start Simultaneous Compressor Start/ StopRestart Inhibit Restart Inhibit Start to Start Time SettingRestart Inhibit Free Starts Clear Restart InhibitOil and Refrigerant Pump Surface TemperaturesOil refrigerant pump circuit 1 or 20 100 percent RLA Base Loading Control AlgorithmGeneral Information Sequence of operation ice making running to ice making Ice Machine ControlHot Water control Unit Control Panel UCP Unit Control Panel UCPControl Panel Devices and Unit Mounted Devices User-defined language support Variable water flow through the evaporatorDynaView main processor Operator InterfaceOperator Interface How It Works Chiller Stop Prevention/Inhibit FeatureTop Level Mode Description System Reset Reference Circuit Operating Mode Chiller Operating ModeMain Screen Main Screen Data Fields TableDiagnostic Screen Back button provides navigation back to the chiller screen Operator Interface Reports Report MenuReport name Circuit Evaporator Report name System EvaporatorReport name System Condenser Report name Circuit CondenserReport name System Ashrae Chiller Log Historic Diagnostics LogHeader Screen Setting Tab screens provides a userChiller Feature SettingsCircuit Mode Overrides System Mode OverridesDisplay Settings PurgeOperator Interface Operator Interface Operator Interface Operator Interface Operator Interface Inter Processor Communications IPC3 Interprocessor CommunicationIPC3 Definitions Bus Management BindingControl panel components layout Control System ComponentsControl System Components Control Panel Devices Head Relief Request Output Machine Shutdown Manual Reset MMRMaximum Capacity Relay Compressor Running RelayExop Refrigerant Monitor Input 1A17Epro Enhanced Protection Trmm TRM4 Tracer Comm 4 interfaceCdrp Condenser Refrigerant Pressure Output Cdrp Refrigerant Pressure Output Option 1A15 Temperature basedCondenser Pressure Output Pressure basedRefrigerant Differential Pressure Indication Output Percent RLA Output Gbas Generic Building Automation SystemExternal Chilled Water Setpoint Ecws Module CharacteristicsExternal Current Limit Setpoint Wpsr WFC Water Pressure Sensing Option1A14 Communication interface Module 1A8, 1A9, 1A11, 1A12 Quad Relay Output Status1A13, 1A18, 1A19, 1A20 Dual Binary input module Analog Input Recommended Length to Run external Output signals1A15, 1A16, 1A17, 1A21 Dual Analog Input/output Module Unit mounted devices Control System Components Control System Components UCP and Wye-Delta Starter Control Circuits Control Sequence of OperationElectrical Sequence Delay time 200 msec. Opens 2K1 Control Sequence of Operation Test and start timing sequence Control Sequence OperationAFD Machine Protection Adaptive Control Momentary Power Loss MPL ProtectionOverload trip time versus percent RLA Current Overload ProtectionReverse Rotation Protection Phase Loss ProtectionCurrent Limit Protection Minimum and Maximum Capacity Limit Differential to Start or StopSoftLoading Evaporator Limit Leaving Water Temperature CutoutHead Relief Relay Low Refrigerant Temperature CutoutCutout strategy Condenser Limit Restart Inhibit High Vacuum Lockout Oil Temperature Control Outdoor Air Temperature Controls Chilled Water Reset CWRMaximum Reset Return WaterDegrees of Reset Values for start reset typesConstant Return EquationOutdoor air temperature versus degrees of reset Reset RatioReset function for return CWR Reset Ratio = 50% Return CWR Daily Unit Start-Up Unit Start-Up ProceduresUnit Startup Toxic Hazards Live Electrical ComponentsSeasonal Unit Start-Up ModeUnit Shutdown Unit Shutdown ProceduresOil Pump Heater Operation Seasonal Unit ShutdownDaily Maintenance and Checks Periodic MaintenanceMoisture Contamination Record Keeping FormsNormal Chiller Operating Characteristics Weekly MaintenanceHazardous Voltage w/Capacitors Every 3 MonthsAnnual Maintenance Off-Season MaintenanceOil Change Procedure Oil MaintenanceHeater Damage Compressor Oil ChangeReplacing Oil Filter Oil Filter ReplacementOil Supply System Problems MaintenanceOther Maintenance Requirements Hazardous Voltage w/ CapacitorsFront View with Refrigerant Pump Rotary valve in drain positionRefrigerant Charge Contains RefrigerantLeak Testing Recovery and Recycle ConnectionsCleaning the Condenser Proper Water TreatmentUnit Corrosion Damage Cleaning the EvaporatorControl Settings Adjustments Unit Preparation Purge System103 104 105 106 107 108 109 110 111 112 113 114 115 Trane