American Standard CH530 Cdrp Refrigerant Pressure Output Option 1A15, Condenser Pressure Output

Page 58

Control System Components

CDRP Refrigerant Pressure Output Option 1A15:

Refrigerant Pressure Output can be configured at commissioning to correspond to either A) the absolute condenser pressure, or B) the differential pressure of the evaporator to condenser pressures.

This vdc output is located at 1A15 – J2 – 4 (+) to J2-6 (Ground)

The Voltage DC Output can source a maximum of 22 mA of current.

This output is Voltage DC only, 4-20 mA is not supported.

A) Condenser Pressure Output.

2 to 10 Vdc corresponds to 0 Psia to the HPC (in Psia) setting.

Temperature based

On standard machines the Percent Condenser Pressure Indication Output is based on the Saturated Condenser Refrigerant and a temperature to pressure conversion is made.

If the Condenser Saturated Temperature goes out of range due to an open or short, a pressure sensor diagnostic will be called and the output will also go to the respective out of range value. That is, for an out of range low on the sensor, the output will be limited to 2.0 VDC. For an out of range high on the sensor, the output will be limited to 10.0 VDC.

Pressure based

With the Enhanced Protection EPRO option, a condenser pressure transducer is installed and the pressure is measured.

If the Condenser Pressure sensor goes out of range due to either an open or short, a pressure sensor diagnostic will be called and the output will go to end of range low. That is, for an out of range low on the sensor, the output will be limited to

2.0VDC. For an out of range high on the sensor, the output will be limited to 2.0 VDC.

Note: CH530 control allows for Delta Pressure, or, condenser pressure but not both on one circuit.

Figure 25. Condenser pressure based output

58

CDHF-SVU01C-EN

Image 58
Contents X39640670030CDHF-SVU01C-EN Read these carefully Contents About this manual General InformationLiterature change Unit NameplateGeneral Information = 560 3 stage 935 2 stage Y = 500 3 stage 835 2 stage Commonly Used Acronyms Control Optional PackagesOverview General Duplex unit components front viewGeneral Duplex unit components 2 stage compressor Cooling Cycle Compressor 1 or 2 2 StagePressure enthalpy curve 3 stage compressor Pressure enthalpy curve 2 stage compressor TechView Chiller Service Tool DynaView Human InterfaceSoftware States Figure Power Up DiagramSoftware Operation Overview Diagram Timeline Text FiguresCDHE/F/G sequence of operation auto to running Staging Second Compressor OnStaging Second Compressor Off Satisfied SetpointCDHF/G sequence of operation lead 1/lag Fixed Sequence Compressor 2 / Compressor CDHE/F/G sequence of operation lead 2 lagSequencing Balanced Starts and Hours CDHF/G sequence of operation equalize starts and hoursSimultaneous Compressor Start/ Stop CDHF/G sequence of operation combined startRestart Inhibit Free Starts Restart Inhibit Start to Start Time SettingRestart Inhibit Clear Restart InhibitSurface Temperatures Oil and Refrigerant PumpOil refrigerant pump circuit 1 or Base Loading Control Algorithm 20 100 percent RLAGeneral Information Ice Machine Control Sequence of operation ice making running to ice makingHot Water control Control Panel Devices and Unit Mounted Devices Unit Control Panel UCPUnit Control Panel UCP Variable water flow through the evaporator User-defined language supportOperator Interface DynaView main processorOperator Interface Chiller Stop Prevention/Inhibit Feature How It WorksTop Level Mode Description System Reset Reference Main Screen Chiller Operating ModeCircuit Operating Mode Main Screen Data Fields TableDiagnostic Screen Back button provides navigation back to the chiller screen Operator Interface Report Menu ReportsReport name System Condenser Report name System EvaporatorReport name Circuit Evaporator Report name Circuit CondenserHistoric Diagnostics Log Report name System Ashrae Chiller LogSetting Tab screens provides a user Header ScreenFeature Settings ChillerDisplay Settings System Mode OverridesCircuit Mode Overrides PurgeOperator Interface Operator Interface Operator Interface Operator Interface Operator Interface IPC3 Definitions Bus Management Interprocessor CommunicationInter Processor Communications IPC3 BindingControl System Components Control panel components layoutControl System Components Control Panel Devices Maximum Capacity Relay Machine Shutdown Manual Reset MMR Head Relief Request Output Compressor Running RelayRefrigerant Monitor Input 1A17 ExopCdrp Condenser Refrigerant Pressure Output Trmm TRM4 Tracer Comm 4 interfaceEpro Enhanced Protection Condenser Pressure Output Temperature basedCdrp Refrigerant Pressure Output Option 1A15 Pressure basedRefrigerant Differential Pressure Indication Output Gbas Generic Building Automation System Percent RLA OutputExternal Current Limit Setpoint Module CharacteristicsExternal Chilled Water Setpoint Ecws Wpsr WFC Water Pressure Sensing Option1A13, 1A18, 1A19, 1A20 Dual Binary input module 1A8, 1A9, 1A11, 1A12 Quad Relay Output Status1A14 Communication interface Module 1A15, 1A16, 1A17, 1A21 Dual Analog Input/output Module Recommended Length to Run external Output signalsAnalog Input Unit mounted devices Control System Components Control System Components Electrical Sequence Control Sequence of OperationUCP and Wye-Delta Starter Control Circuits Delay time 200 msec. Opens 2K1 Control Sequence of Operation Control Sequence Operation Test and start timing sequenceAFD Momentary Power Loss MPL Protection Machine Protection Adaptive ControlCurrent Overload Protection Overload trip time versus percent RLACurrent Limit Protection Phase Loss ProtectionReverse Rotation Protection SoftLoading Differential to Start or StopMinimum and Maximum Capacity Limit Leaving Water Temperature Cutout Evaporator LimitLow Refrigerant Temperature Cutout Head Relief RelayCutout strategy Condenser Limit Restart Inhibit High Vacuum Lockout Oil Temperature Control Maximum Reset Controls Chilled Water Reset CWROutdoor Air Temperature Return WaterConstant Return Values for start reset typesDegrees of Reset EquationReset Ratio Outdoor air temperature versus degrees of resetReset function for return CWR Reset Ratio = 50% Return CWR Unit Startup Unit Start-Up ProceduresDaily Unit Start-Up Seasonal Unit Start-Up Live Electrical ComponentsToxic Hazards ModeOil Pump Heater Operation Unit Shutdown ProceduresUnit Shutdown Seasonal Unit ShutdownMoisture Contamination Periodic MaintenanceDaily Maintenance and Checks Record Keeping FormsHazardous Voltage w/Capacitors Weekly MaintenanceNormal Chiller Operating Characteristics Every 3 MonthsOff-Season Maintenance Annual MaintenanceHeater Damage Oil MaintenanceOil Change Procedure Compressor Oil ChangeOil Filter Replacement Replacing Oil FilterOther Maintenance Requirements MaintenanceOil Supply System Problems Hazardous Voltage w/ CapacitorsRotary valve in drain position Front View with Refrigerant PumpContains Refrigerant Refrigerant ChargeCleaning the Condenser Recovery and Recycle ConnectionsLeak Testing Proper Water TreatmentControl Settings Adjustments Cleaning the EvaporatorUnit Corrosion Damage Purge System Unit Preparation103 104 105 106 107 108 109 110 111 112 113 114 115 Trane