American Standard CH530 manual Surface Temperatures, Oil and Refrigerant Pump

Page 22

General Information

Oil and Refrigerant Pump

Compressor Lubrication System - A schematic diagram of the compressor lubrication system is illustrated in Figure 16. (This can be applied to circuit 1 or 2.)

Oil is pumped from the oil tank (by a pump and motor located within the tank) through an oil pressure- regulating valve designed to maintain a net oil pressure of 18 to 22 psid. It is then filtered and sent to the oil cooler located in the economizer and on to the bearings. From the bearings, the oil drains back to the manifold under the motor and then on to the oil tank.

￿WARNING

Surface Temperatures!

MAY EXCEED 150°F. Use caution while working on certain areas of the unit, failure to do so may result in death or personal injury.

To ensure proper lubrication and prevent refrigerant from condensing in the oil tank, a 750-watt heater is immersed in the oil tank and is used to warm the oil while the unit is off. When the unit starts, the oil heater is de-energized. This heater energizes as needed to maintain 140° to 145° F (60-63°C) when the chiller is not running.

When the chiller is operating, the temperature of the oil tank is typically 115° to 160°F (46-72°C). The oil return lines from the thrust and journal bearings, transport oil and some seal leakage refrigerant. The oil return lines are routed into a manifold under the motor. Gas flow exits the top of the manifold and is vented to the Evaporator.

Note: A vent line solenoid is not needed with the refrigerant pump. Oil exits the bottom of the manifold and returns to the tank. Separation of the seal leakage gas in the manifold keeps this gas out of the tank.

A dual eductor system is used to reclaim oil from the suction cover and the evaporator, and deposit it back into the oil tank. These eductors use high pressure condenser gas to draw the oil from the suction cover and evaporator to the eductors and then discharged into the oil tank. The evaporator eductor line has a shut off valve mounted by the evaporator and ships closed. Open two turns if necessary.

Liquid refrigerant is used to cool the oil supply to both the thrust bearing and journal bearings. On refrigerant pump units the oil cooler is located inside the economizer and uses refrigerant passing from the condenser to evaporator to cool the oil. Oil leaves the oil cooler and flows to both the thrust and journal bearings.

Motor Cooling System Compressor motors are cooled with liquid refrigerant, see Figure 16.

The refrigerant pump is located on the front of the oil tank (motor inside the oil tank). The refrigerant pump inlet is connected to the well at the bottom of the condenser. The connection is on the side where a weir assures a preferential supply of liquid. Refrigerant is delivered to the motor via the pump. Motor refrigerant drain lines are routed to the condenser.

22

CDHF-SVU01C-EN

Image 22
Contents X39640670030CDHF-SVU01C-EN Read these carefully Contents About this manual General InformationLiterature change Unit NameplateGeneral Information = 560 3 stage 935 2 stage Y = 500 3 stage 835 2 stage Commonly Used Acronyms Control Optional PackagesOverview General Duplex unit components front viewGeneral Duplex unit components 2 stage compressor Cooling Cycle Compressor 1 or 2 2 StagePressure enthalpy curve 3 stage compressor Pressure enthalpy curve 2 stage compressor TechView Chiller Service Tool DynaView Human InterfaceSoftware States Figure Power Up DiagramSoftware Operation Overview Diagram Timeline Text FiguresCDHE/F/G sequence of operation auto to running Staging Second Compressor OnStaging Second Compressor Off Satisfied SetpointCDHF/G sequence of operation lead 1/lag Fixed Sequence Compressor 2 / Compressor CDHE/F/G sequence of operation lead 2 lag Sequencing Balanced Starts and Hours CDHF/G sequence of operation equalize starts and hoursSimultaneous Compressor Start/ Stop CDHF/G sequence of operation combined startRestart Inhibit Free Starts Restart Inhibit Start to Start Time SettingRestart Inhibit Clear Restart InhibitSurface Temperatures Oil and Refrigerant PumpOil refrigerant pump circuit 1 or Base Loading Control Algorithm 20 100 percent RLAGeneral Information Ice Machine Control Sequence of operation ice making running to ice makingHot Water control Control Panel Devices and Unit Mounted Devices Unit Control Panel UCPUnit Control Panel UCP Variable water flow through the evaporator User-defined language supportOperator Interface DynaView main processorOperator Interface Chiller Stop Prevention/Inhibit Feature How It WorksTop Level Mode Description System Reset Reference Main Screen Chiller Operating ModeCircuit Operating Mode Main Screen Data Fields TableDiagnostic Screen Back button provides navigation back to the chiller screen Operator Interface Report Menu ReportsReport name System Condenser Report name System EvaporatorReport name Circuit Evaporator Report name Circuit CondenserHistoric Diagnostics Log Report name System Ashrae Chiller LogSetting Tab screens provides a user Header ScreenFeature Settings ChillerDisplay Settings System Mode OverridesCircuit Mode Overrides PurgeOperator Interface Operator Interface Operator Interface Operator Interface Operator Interface IPC3 Definitions Bus Management Interprocessor CommunicationInter Processor Communications IPC3 BindingControl System Components Control panel components layoutControl System Components Control Panel Devices Maximum Capacity Relay Machine Shutdown Manual Reset MMRHead Relief Request Output Compressor Running RelayRefrigerant Monitor Input 1A17 ExopCdrp Condenser Refrigerant Pressure Output Trmm TRM4 Tracer Comm 4 interfaceEpro Enhanced Protection Condenser Pressure Output Temperature basedCdrp Refrigerant Pressure Output Option 1A15 Pressure basedRefrigerant Differential Pressure Indication Output Gbas Generic Building Automation System Percent RLA OutputExternal Current Limit Setpoint Module CharacteristicsExternal Chilled Water Setpoint Ecws Wpsr WFC Water Pressure Sensing Option1A13, 1A18, 1A19, 1A20 Dual Binary input module 1A8, 1A9, 1A11, 1A12 Quad Relay Output Status1A14 Communication interface Module 1A15, 1A16, 1A17, 1A21 Dual Analog Input/output Module Recommended Length to Run external Output signalsAnalog Input Unit mounted devices Control System Components Control System Components Electrical Sequence Control Sequence of OperationUCP and Wye-Delta Starter Control Circuits Delay time 200 msec. Opens 2K1 Control Sequence of Operation Control Sequence Operation Test and start timing sequenceAFD Momentary Power Loss MPL Protection Machine Protection Adaptive ControlCurrent Overload Protection Overload trip time versus percent RLACurrent Limit Protection Phase Loss ProtectionReverse Rotation Protection SoftLoading Differential to Start or StopMinimum and Maximum Capacity Limit Leaving Water Temperature Cutout Evaporator LimitLow Refrigerant Temperature Cutout Head Relief RelayCutout strategy Condenser Limit Restart Inhibit High Vacuum Lockout Oil Temperature Control Maximum Reset Controls Chilled Water Reset CWROutdoor Air Temperature Return WaterConstant Return Values for start reset typesDegrees of Reset EquationReset Ratio Outdoor air temperature versus degrees of resetReset function for return CWR Reset Ratio = 50% Return CWR Unit Startup Unit Start-Up ProceduresDaily Unit Start-Up Seasonal Unit Start-Up Live Electrical ComponentsToxic Hazards ModeOil Pump Heater Operation Unit Shutdown ProceduresUnit Shutdown Seasonal Unit ShutdownMoisture Contamination Periodic MaintenanceDaily Maintenance and Checks Record Keeping FormsHazardous Voltage w/Capacitors Weekly MaintenanceNormal Chiller Operating Characteristics Every 3 MonthsOff-Season Maintenance Annual MaintenanceHeater Damage Oil MaintenanceOil Change Procedure Compressor Oil ChangeOil Filter Replacement Replacing Oil FilterOther Maintenance Requirements MaintenanceOil Supply System Problems Hazardous Voltage w/ CapacitorsRotary valve in drain position Front View with Refrigerant PumpContains Refrigerant Refrigerant ChargeCleaning the Condenser Recovery and Recycle ConnectionsLeak Testing Proper Water TreatmentControl Settings Adjustments Cleaning the EvaporatorUnit Corrosion Damage Purge System Unit Preparation103 104 105 106 107 108 109 110 111 112 113 114 115 Trane