US 88 Entretien et nettoyage

CA (FR)

Pour démarrer un cycle de nettoyage

1Retirez les grilles du four, les rayons latéraux et tous les autres accessoires, ustensiles de cuisson et autres.

Consultez les sections « Retrait et remplacement des rayons latéraux » et « Positionnement des grilles » pour les instructions.

2Essuyez tout déversement ou dépôt de graisse et lavez toute particule alimentaire libre. Ne pas vous conformer à cette consigne pourrait décolorer les surfaces du four et causer un excès de fumée durant le cycle.

3Assurez-vous que les couvercles de lampe sont en place.

4Si le cadre du four ou le rebord extérieur de l’intérieur de la porte sont sales (les zones ombrées illustrées ci-dessus), nettoyez-les à l’aide d’un tampon non abrasif imbibé de savon, puis essuyez-les avec un chiffon humide et propre.

5Fermez complètement la porte du four.

6Démarrez la hotte de ventilation de la cuisinière au maximum et laissez-la fonctionner pour toute la durée du cycle.

Halo

Halo

(blanc)

(orange puis rouge)

7Tournez le bouton de mode d’utilisation du four dans le sens antihoraire à la position CLEAN.

Son halo deviendra blanc et la porte du four se verrouillera.

Pour votre propre sécurité, la porte demeurera verrouillée pendant toute la durée du cycle et même après le cycle, jusqu’à ce que le four se soit refroidi à une température de cuisson.

8Tournez le bouton de température dans le sens antihoraire jusqu’à la position CLEAN.

Son halo apparaîtra d’abord en orange, puis tournera au rouge durant le cycle. Il s’éteindra lorsque le cycle est terminé.

.

Page 90
Image 90
DCS RGUC/RGVC, RGY/RGV, RDU/RDV manual US 88 Entretien et nettoyage, Pour démarrer un cycle de nettoyage

RDU/RDV, RGY/RGV, RGUC/RGVC specifications

DCS RGUC/RGVC, RGY/RGV, RDU/RDV refer to a range of advanced communication and control systems designed for various applications in automation, data transmission, and remote monitoring. These systems are particularly significant in sectors like manufacturing, energy management, and telecommunications due to their robust features and cutting-edge technologies.

One of the main features of the DCS RGUC/RGVC systems is their modular architecture. This allows for scalability and flexibility, making it easier to adapt the system to diverse operational requirements. Each module is designed to fulfill specific functions, whether it’s data acquisition, processing, or network communication. This modularity not only simplifies maintenance but also enhances the system's overall efficiency.

Another critical aspect of these systems is their use of real-time data processing technologies. By harnessing high-speed processors and advanced algorithms, the RGUC/RGVC family can handle large volumes of data almost instantaneously. This capability is essential for applications that require quick decision-making based on current operational conditions.

The communication protocols employed by the DCS RGUC/RGVC are state-of-the-art, featuring support for industry standards such as Modbus, Profibus, and Ethernet/IP. This ensures compatibility with various field devices and systems, allowing for seamless integration into existing setups. Additionally, advanced security features are integrated to protect sensitive data against unauthorized access.

Energy efficiency is another hallmark of the DCS RGUC/RGVC series. These systems are designed to minimize power consumption without sacrificing performance, which is increasingly important in today’s environmentally conscious landscape. By optimizing energy use, organizations can reduce operational costs and contribute to sustainability goals.

The RGY/RGV and RDU/RDV models are tailored for specific applications within this framework. The RGY/RGV series is often utilized in grid management and energy distribution, while the RDU/RDV models are geared towards data relay and signal processing tasks. Each model is tailored to meet the distinct demands of its respective domain, ensuring reliability and optimal performance.

In conclusion, the DCS RGUC/RGVC, RGY/RGV, and RDU/RDV systems stand out due to their modularity, real-time data processing, compatibility with various communication protocols, energy efficiency, and tailor-made applications. As industries continue to evolve towards more automated and interconnected systems, these advanced communication and control technologies play a vital role in driving efficiency and innovation.