Motorola TMS320C6711D warranty Parameter, HCS Hrdy

Page 88

SPRS292 − OCTOBER 2005

HOST-PORT INTERFACE TIMING (CONTINUED)

switching characteristics over recommended operating conditions during host-port interface cycles†‡ (see Figure 42, Figure 43, Figure 44, and Figure 45)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GDPA−167

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZDPA−167

 

NO.

 

 

 

 

 

 

 

 

PARAMETER

−200

 

UNIT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−250

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MIN

MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

td(HCS-HRDY)

Delay time,

 

to

 

 

 

 

§

 

 

 

 

 

 

 

1

12

ns

HCS

HRDY

6

td(HSTBL-HRDYH)

Delay time,

 

 

 

 

low to

 

 

 

high

3

12

ns

HSTROBE

HRDY

7

td(HSTBL-HDLZ)

Delay time,

 

 

 

 

low to HD low impedance for an HPI read

2

 

ns

HSTROBE

 

8

td(HDV-HRDYL)

Delay time, HD valid to

 

 

low

2P − 4

 

ns

HRDY

 

9

toh(HSTBH-HDV)

Output hold time, HD valid after

 

 

 

high

3

12

ns

HSTROBE

15

td(HSTBH-HDHZ)

Delay time,

 

 

 

high to HD high impedance

3

12

ns

HSTROBE

16

td(HSTBL-HDV)

Delay time,

 

 

 

 

low to HD valid

3

12.5

ns

HSTROBE

17

td(HSTBH-HRDYH)

Delay time,

 

 

 

 

high to

 

 

 

high#

3

12

ns

HSTROBE

HRDY

HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

§HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy completing a previous HPID write or READ with autoincrement.

This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the request to the EDMA internal address generation hardware, and HRDY remains high until the EDMA internal address generation hardware loads the requested data into HPID.

#This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.

88

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

Image 88
Contents SPRS292A − October 2005 − Revised November Table of Contents Pages ADDITIONS/CHANGES/DELETIONS Revision HistoryMultichannel Buffered Serial Port Timing GDP and ZDP 272-PIN Ball Grid Array BGA PACKAGES† GDP and ZDP BGA packages bottom viewBottom View Description Device characteristics Characteristics of the C6711D ProcessorHardware Features Internal Clock C6711DDevice compatibility Functional block and CPU DSP core diagram Digital Signal ProcessorCPU DSP core description ST1 DA1DA2 ST2TMS320C6711D Memory Map Summary Memory map summaryMemory Block Description Block Size Bytes HEX Address Range Peripheral register descriptions Emif RegistersL2 Cache Registers HEX Address Range Acronym Register NameInterrupt Selector Registers Device RegistersEdma Parameter RAM† HEX Address Range Acronym Register Name CommentsEdma Registers Quick DMA Qdma and Pseudo Registers†Gpio Registers PLL Controller RegistersHPI Registers Timer 0 and Timer 1 Registers HEX Address Range Acronym Register Name Comments TimerMcBSP0 and McBSP1 Registers McBSP0 McBSP1Signal groups description CE3 CE2CE1 CE0Gpio GP7EXTINT7 GP6EXTINT6 GP5EXTINT5 GP4EXTINT4CLKOUT2/GP2 General-Purpose Input/Output Gpio PortDevice Configurations Device configurations at device resetBOOTMODE‡ Configuration GDP/ZDP Functional Description PINCLKMODE0 Eksrc Devcfg register descriptionBIT # Name Description Terminal Functions Terminal Functions PIN SignalIPD Description Name GDP IPU‡ ZDP Resets and Interrupts IPD Description Name GDP IPU‡ ZDP Jtag EmulationIPD Description Name GDP IPU‡ ZDP HOST-PORT Interface HPI Used for transfer of data, address, and controlLittle Endian HD12Decoded from the two lowest bits of the internal address Only one asserted during any external data accessEmif − ASYNCHRONOUS/SYNCHRONOUS Memory Control ¶ IPD Description Name GDP IPU‡ ZDP Emif − Address ¶ EA9 EA8 EA7 EA6 EA5 EA4 EA3 EA2IPD Description Name GDP IPU‡ ZDP Emif − Data ¶ Multichannel Buffered Serial Port 1 McBSP1Multichannel Buffered Serial Port 0 McBSP0 GENERAL-PURPOSE INPUT/OUTPUT Gpio ModuleRSV IPU RSVRSV IPD Name GDP ZDP Supply Voltage Pins DvddCvdd Supply voltage See NoteDescription Name GDP ZDP Supply Voltage Pins Ground PinsVSS GNDPIN Signal TYPE† Description Name GDP ZDP Ground Pins VSSDescription Name GDP ZDP Ground Pins VSS GNDSoftware Development Tools Development supportHardware Development Tools Device and development-support tool nomenclature Device supportFully qualified production device Device Family Temperature Range Default 0 C to 90 C PrefixDevice Speed Range TechnologyDocumentation support CPU CSR register description Revision IDPwrd PCC DCC Pgie GIECPU ID CPU CSR Register Bit Field DescriptionPCC Ccfg Register Bit Field Description Cache configuration Ccfg register descriptionL2MODE DSP Interrupt Default Selector Module Control Interrupt sources and interrupt selectorDSP Interrupts Interrupt Selector EventEdma Channels Edma module and Edma selectorEdma Selector ESEL1 Register 0x01A0 FF04 ESEL3 Register 0x01A0 FF0CPLL and PLL controller PLL Lock and Reset Times Clkout Signals, Default Settings, and ControlEnabled or Disabled MIN TYP MAX UnitPLL Clock Frequency Ranges†‡ Clock SignalGDPA−167, ZDPA-167 Pllcsr Register 0x01B7 C100 PLL Control/Status Register PllcsrPllm Register 0x01B7 C110 PLL Multiplier Control Register PllmDxEN Oscillator Divider 1 Register OSCDIV1 OSCDIV1 Register 0x01B7 C124OD1EN GP7 GP6 GP5 GP4 GP2 General-purpose input/output GpioDIR Power-down mode logic Pwrd Field of the CSR Register PD3 PD2 PD1Power-supply sequencing Characteristics of the Power-Down ModesSystem-level design considerations ModePower-supply decoupling Power-supply design considerationsDvdd DSP Cvdd VSS GNDIeee 1149.1 Jtag compatibility statement Emif device speed Example Boards and Maximum Emif SpeedEmif Data Lines Pins Where Data Present Emif big endian mode correctnessED3124 BE3 ED2316 BE2 ED158 BE1 ED70 BE0 Bootmode ResetMIN NOM MAX Unit Recommended operating conditions‡IOH Parameter Test Conditions MIN TYP MAX Unit IOZSignal transition levels Parameter Measurement InformationTester Pin Electronics Output Under TestAC transient rise/fall time specifications = 0.3 tcmax† VIL max VUS max GroundTiming parameters and board routing analysis Board-Level Timings Example see Figure Control Signals † Output from DSPOutput from DSP PLL Mode Bypass Mode Unit Input and Output ClocksTiming requirements for Clkin †‡§ See FigureParameter GDPA-167Clkin CLKOUT3 Timing requirements for ECLKIN† see Figure GDPA-167 ZDPA−167−200 −250Asynchronous Memory Timing Timing requirements for asynchronous memory cycles†‡§See −Figure AreSetup = Strobe = Not Ready CEx BE30 EA212 Address ED310 Read DataAOE/SDRAS/SSOE † AWE/SDWE/SSWE † ArdyCEx BE30 EA212 Setup = Strobe = Not Ready Hold =AOE/SDRAS/SSOE † ARE/SDCAS/SSADS † AWE/SDWE/SSWE † Ardy SYNCHRONOUS-BURST Memory Timing Timing requirements for synchronous-burst Sram cycles†CEx BE30 BE1 BE2 BE3 BE4EA212 ED310 ARE/SDCAS/SSADS† AOE/SDRAS/SSOE† AWE/SDWE/SSWE†Synchronous Dram Timing Timing requirements for synchronous Dram cycles† see FigureEA2113 Bank EA112 Column EA12 ED310 Read EclkoutAOE/SDRAS/SSOE † ARE/SDCAS/SSADS† AWE/SDWE/SSWE† Write Eclkout EA2113EA12 ED310 AOE/SDRAS/SSOE † ARE/SDCAS/SSADS † AWE/SDWE/SSWE †Actv Eclkout CEx BE30 EA2113 Bank Activate EA112 Row Address EA12 ED310AOE/SDRAS/SSOE† ARE/SDCAS/SSADS† AWE/SDWE/SSWE† Dcab EclkoutDeac Eclkout CEx BE30 EA2113 Bank EA112 EA12 ED310Refr Eclkout CEx BE30 EA212 EA12 ED310MRS Eclkout CEx BE30 EA212 MRS value ED310Timing requirements for See Figure HOLD/HOLDA cycles† HOLD/HOLDA TimingHold Holda Busreq Timing Eclkout BusreqTiming requirements for reset†‡ see Figure Reset TimingCLKMODE0 = Clkin Eclkin Reset PhaseEmif Z Group† Emif Low Group† Group 2† Boot and Device Timing requirements for external interrupts† see Figure External Interrupt TimingEXTINT, NMI HOST-PORT Interface Timing GDPA−167Hstrobe Hstrobe HrdyHCS Hrdy Has HR/W Hhwil Hstrobe † HCSHas † HR/W Hhwil Hstrobe ‡ HCSHrdy HD150 input 1st halfword 2nd halfwordHD150 input 1st half-word 2nd half-word −1 ¶ Multichannel Buffered Serial Port Timing Clks Clkr FSR intBitn-1 ClkxTiming requirements for FSR when Gsync = 1 see Figure ClksFSR external CLKR/X no need to resync CLKR/X needs resync Master Slave MIN MAXClkx FSX MASTER§ Slave MINBit Bitn-1 MASTER§ Slave MIN MAX GDPA-167 McBSP Timing as SPI Master or Slave Clkstp = 10b, Clkxp = McBSP Timing as SPI Master or Slave Clkstp = 11b, Clkxp = Timing requirements for timer inputs† Timer TimingTINPx TOUTx Timing requirements for Gpio inputs†‡ GENERAL-PURPOSE INPUT/OUTPUT Gpio Port TimingGPIx GPOx DTCKL-TDOV Delay time, TCK low to TDO valid Jtag TEST-PORT TimingTiming requirements for Jtag test port see Figure TCK TDO TDI/TMS/TRSTPackage thermal resistance characteristics Thermal resistance characteristics S-PBGA package for GDPThermal resistance characteristics S-PBGA package for ZDP Mechanical DataOrderable Device Status Package Pins Package Eco Plan Packaging InformationMSL Peak Temp QtyGDP S-PBGA-N272 Seating Plane 4204396/A 04/02ZDP S-PBGA-N272 Seating Plane 4204398/A 04/02Important Notice