First-time SCPI users, see page 154.

Chapter 4 Remote Interface Reference

Triggering

Triggering

See also “Triggering,” starting on page 71 in chapter 3.

The multimeter’s triggering system allows you to generate triggers either manually or automatically, take multiple readings per trigger, and insert a delay before each reading. Normally, the multimeter will take one reading each time it receives a trigger, but you can specify multiple readings (up to 50,000) per trigger.

Triggering the multimeter from the remote interface is a multi-step process that offers triggering flexibility.

First, you must configure the multimeter for the measurement by selecting the function, range, resolution, etc.

Then, you must specify the source from which the multimeter will

accept the trigger. The multimeter will accept a software (bus) trigger

4

from the remote interface, a hardware trigger from the rear-panel

Ext Trig (external trigger) terminal, or an immediate internal trigger.

Then, you must make sure that the multimeter is ready to accept

a trigger from the specified trigger source (this is called the wait-for- trigger state).

The diagram on the next page shows the multimeter’s triggering system.

127

Page 133
Image 133
Agilent Technologies 34401A manual See also Triggering, starting on page 71 in chapter

34401A specifications

Agilent Technologies 34401A is a highly reputable digital multimeter (DMM), renowned for its accuracy, versatility, and performance in a wide range of measurement applications. First introduced in the early 1990s, the 34401A has become a staple in laboratories, manufacturing environments, and educational institutions due to its robust build and comprehensive features.

One of the standout characteristics of the 34401A is its impressive accuracy, boasting a basic DC voltage accuracy of 0.0035%, making it ideal for precise measurements in electronic testing. The multimeter offers a wide range of measurement capabilities, including voltage (DC and AC), current (DC and AC), resistance, frequency, and continuity test, making it a highly versatile tool for engineers and technicians.

The 34401A utilizes a 6½-digit resolution, enabling the user to measure small changes in electrical signals with remarkable precision. With a sampling rate of up to 1000 readings per second, it can handle dynamic test requirements, providing timely results without sacrificing measurement integrity.

In terms of connectivity, the Agilent 34401A includes a GPIB (General Purpose Interface Bus) for remote operation, allowing users to automate their testing processes and integrate the multimeter easily into larger measurement systems. This feature is particularly beneficial in automated test environments, where speed and accuracy are paramount.

Additionally, the DMM incorporates advanced measurement functions, such as statistical analysis, including mean, standard deviation, and minimum/maximum readings, which provide users with valuable insights into their data. The instrument's user-friendly interface, complete with a clear digital display and intuitive controls, enhances usability and ensures that users can easily navigate its various functions.

Robust software support further extends the capabilities of the Agilent 34401A. It is compatible with a range of software tools for data logging and analysis, enabling users to efficiently document and analyze their measurements over time.

In summary, Agilent Technologies 34401A stands out in the realm of digital multimeters due to its high accuracy, extensive measurement functionalities, and user-friendly features. Whether for research and development, quality control, or educational purposes, the 34401A remains a preferred choice for professionals demanding reliable and precise measurement solutions. Its enduring legacy in the industry speaks to its performance and reliability, making it an essential tool for anyone involved in electronic testing and measurement.