Chapter 8 Specifications

Interpreting Multimeter Specifications

Transfer Accuracy

Transfer accuracy refers to the error introduced by the multimeter due to noise and short-term drift. This error becomes apparent when comparing two nearly-equal signals for the purpose of “transferring” the known accuracy of one device to the other.

24-Hour Accuracy

The 24-hour accuracy specification indicates the multimeter’s relative accuracy over its full measurement range for short time intervals and within a stable environment. Short-term accuracy is usually specified for a 24-hour period and for a ±1°C temperature range.

90-Day and 1-Year Accuracy

These long-term accuracy specifications are valid for a 23°C ± 5°C temperature range. These specifications include the initial calibration errors plus the multimeter’s long-term drift errors.

Temperature Coefficients

Accuracy is usually specified for a 23°C ± 5°C temperature range.

This is a common temperature range for many operating environments. You must add additional temperature coefficient errors to the accuracy specification if you are operating the multimeter outside a 23°C ± 5°C temperature range (the specification is per °C).

228

Page 234
Image 234
Agilent Technologies 34401A manual Transfer Accuracy, Hour Accuracy, Day and 1-Year Accuracy, Temperature Coefficients

34401A specifications

Agilent Technologies 34401A is a highly reputable digital multimeter (DMM), renowned for its accuracy, versatility, and performance in a wide range of measurement applications. First introduced in the early 1990s, the 34401A has become a staple in laboratories, manufacturing environments, and educational institutions due to its robust build and comprehensive features.

One of the standout characteristics of the 34401A is its impressive accuracy, boasting a basic DC voltage accuracy of 0.0035%, making it ideal for precise measurements in electronic testing. The multimeter offers a wide range of measurement capabilities, including voltage (DC and AC), current (DC and AC), resistance, frequency, and continuity test, making it a highly versatile tool for engineers and technicians.

The 34401A utilizes a 6½-digit resolution, enabling the user to measure small changes in electrical signals with remarkable precision. With a sampling rate of up to 1000 readings per second, it can handle dynamic test requirements, providing timely results without sacrificing measurement integrity.

In terms of connectivity, the Agilent 34401A includes a GPIB (General Purpose Interface Bus) for remote operation, allowing users to automate their testing processes and integrate the multimeter easily into larger measurement systems. This feature is particularly beneficial in automated test environments, where speed and accuracy are paramount.

Additionally, the DMM incorporates advanced measurement functions, such as statistical analysis, including mean, standard deviation, and minimum/maximum readings, which provide users with valuable insights into their data. The instrument's user-friendly interface, complete with a clear digital display and intuitive controls, enhances usability and ensures that users can easily navigate its various functions.

Robust software support further extends the capabilities of the Agilent 34401A. It is compatible with a range of software tools for data logging and analysis, enabling users to efficiently document and analyze their measurements over time.

In summary, Agilent Technologies 34401A stands out in the realm of digital multimeters due to its high accuracy, extensive measurement functionalities, and user-friendly features. Whether for research and development, quality control, or educational purposes, the 34401A remains a preferred choice for professionals demanding reliable and precise measurement solutions. Its enduring legacy in the industry speaks to its performance and reliability, making it an essential tool for anyone involved in electronic testing and measurement.