Chapter 7 Measurement Tutorial

Low-Level Measurement Errors

Low-Level Measurement Errors

When measuring ac voltages less than 100 mV, be aware that these measurements are especially susceptible to errors introduced by extraneous noise sources. An exposed test lead will act as an antenna and a properly functioning multimeter will measure the signals received. The entire measurement path, including the power line, act as a loop antenna. Circulating currents in the loop will create error voltages across any impedances in series with the multimeter’s input. For this reason, you should apply low-level ac voltages to the multimeter through shielded cables. You should connect the shield to the input LO terminal.

Make sure the multimeter and the ac source are connected to the same electrical outlet whenever possible. You should also minimize the area of any ground loops that cannot be avoided. A high-impedance source is more susceptible to noise pickup than a low-impedance source. You can reduce the high-frequency impedance of a source by placing a capacitor in parallel with the multimeter’s input terminals. You may have to experiment to determine the correct capacitor value for your application.

Most extraneous noise is not correlated with the input signal. You can determine the error as shown below.

Voltage Measured =

 

 

Vin

2 + Noise 2

Correlated noise, while rare, is especially detrimental. Correlated noise will always add directly to the input signal. Measuring a low-level signal with the same frequency as the local power line is a common situation that is prone to this error.

7

211

Page 217
Image 217
Agilent Technologies 34401A manual Low-Level Measurement Errors, Voltage Measured = √, + Noise

34401A specifications

Agilent Technologies 34401A is a highly reputable digital multimeter (DMM), renowned for its accuracy, versatility, and performance in a wide range of measurement applications. First introduced in the early 1990s, the 34401A has become a staple in laboratories, manufacturing environments, and educational institutions due to its robust build and comprehensive features.

One of the standout characteristics of the 34401A is its impressive accuracy, boasting a basic DC voltage accuracy of 0.0035%, making it ideal for precise measurements in electronic testing. The multimeter offers a wide range of measurement capabilities, including voltage (DC and AC), current (DC and AC), resistance, frequency, and continuity test, making it a highly versatile tool for engineers and technicians.

The 34401A utilizes a 6½-digit resolution, enabling the user to measure small changes in electrical signals with remarkable precision. With a sampling rate of up to 1000 readings per second, it can handle dynamic test requirements, providing timely results without sacrificing measurement integrity.

In terms of connectivity, the Agilent 34401A includes a GPIB (General Purpose Interface Bus) for remote operation, allowing users to automate their testing processes and integrate the multimeter easily into larger measurement systems. This feature is particularly beneficial in automated test environments, where speed and accuracy are paramount.

Additionally, the DMM incorporates advanced measurement functions, such as statistical analysis, including mean, standard deviation, and minimum/maximum readings, which provide users with valuable insights into their data. The instrument's user-friendly interface, complete with a clear digital display and intuitive controls, enhances usability and ensures that users can easily navigate its various functions.

Robust software support further extends the capabilities of the Agilent 34401A. It is compatible with a range of software tools for data logging and analysis, enabling users to efficiently document and analyze their measurements over time.

In summary, Agilent Technologies 34401A stands out in the realm of digital multimeters due to its high accuracy, extensive measurement functionalities, and user-friendly features. Whether for research and development, quality control, or educational purposes, the 34401A remains a preferred choice for professionals demanding reliable and precise measurement solutions. Its enduring legacy in the industry speaks to its performance and reliability, making it an essential tool for anyone involved in electronic testing and measurement.