Chapter 7 Measurement Tutorial

Crest Factor Errors (non-sinusoidal inputs)

An ac-coupled true RMS measurement is desirable in situations where you are measuring small ac signals in the presence of large dc offsets. For example, this situation is common when measuring ac ripple present on dc power supplies. There are situations, however, where you might want to know the ac+dc true RMS value. You can determine this value by combining results from dc and ac measurements as shown below. You should perform the dc measurement using at least 10 power line cycles of integration (6 digit mode) for best ac rejection.

ac + dc = ac2 + dc2

Crest Factor Errors (non-sinusoidal inputs)

A common misconception is that “since an ac multimeter is true RMS, its sinewave accuracy specifications apply to all waveforms.” Actually, the shape of the input signal can dramatically affect measurement accuracy. A common way to describe signal waveshapes is crest factor. Crest factor is the ratio of the peak value to RMS value of a waveform.

For a pulse train, for example, the crest factor is approximately equal to the square root of the inverse of the duty cycle as shown in the table on the previous page. In general, the greater the crest factor, the greater the energy contained in higher frequency harmonics. All multimeters exhibit measurement errors that are crest factor dependent. Crest factor errors for the Agilent 34401A are shown in the specifications in chapter

8.Note that the crest factor errors do not apply for input signals below

100Hz when using the slow ac filter.

7

207

Page 213
Image 213
Agilent Technologies 34401A manual Crest Factor Errors non-sinusoidal inputs, Ac + dc = √ ac2 + dc2

34401A specifications

Agilent Technologies 34401A is a highly reputable digital multimeter (DMM), renowned for its accuracy, versatility, and performance in a wide range of measurement applications. First introduced in the early 1990s, the 34401A has become a staple in laboratories, manufacturing environments, and educational institutions due to its robust build and comprehensive features.

One of the standout characteristics of the 34401A is its impressive accuracy, boasting a basic DC voltage accuracy of 0.0035%, making it ideal for precise measurements in electronic testing. The multimeter offers a wide range of measurement capabilities, including voltage (DC and AC), current (DC and AC), resistance, frequency, and continuity test, making it a highly versatile tool for engineers and technicians.

The 34401A utilizes a 6½-digit resolution, enabling the user to measure small changes in electrical signals with remarkable precision. With a sampling rate of up to 1000 readings per second, it can handle dynamic test requirements, providing timely results without sacrificing measurement integrity.

In terms of connectivity, the Agilent 34401A includes a GPIB (General Purpose Interface Bus) for remote operation, allowing users to automate their testing processes and integrate the multimeter easily into larger measurement systems. This feature is particularly beneficial in automated test environments, where speed and accuracy are paramount.

Additionally, the DMM incorporates advanced measurement functions, such as statistical analysis, including mean, standard deviation, and minimum/maximum readings, which provide users with valuable insights into their data. The instrument's user-friendly interface, complete with a clear digital display and intuitive controls, enhances usability and ensures that users can easily navigate its various functions.

Robust software support further extends the capabilities of the Agilent 34401A. It is compatible with a range of software tools for data logging and analysis, enabling users to efficiently document and analyze their measurements over time.

In summary, Agilent Technologies 34401A stands out in the realm of digital multimeters due to its high accuracy, extensive measurement functionalities, and user-friendly features. Whether for research and development, quality control, or educational purposes, the 34401A remains a preferred choice for professionals demanding reliable and precise measurement solutions. Its enduring legacy in the industry speaks to its performance and reliability, making it an essential tool for anyone involved in electronic testing and measurement.