Introduction to Programming

The Status Model

The Operational/Questionable Slot Status Event Register (OSSER/QSSER) contains the status of a particular module slot. A bit changes from 0 → 1 when an event occurs, for example, when a laser is switched on. For details of the function of each bit of these registers, see “Operation/Questionable Status Summary Register” on page 38.

The Operational/Questionable Slot Enable Status Mask (OSESM/QSESM) allows you to choose the events for each module slot that may affect the Operational/Questionable Status Event Register (see below). If you set a bit of the OSESM/QSESM to zero, the occurence of the corresponding event for this particular module slot cannot affect the Operational/Questionable Status Event Register. The default is for all the bits of the OSESM/QSESM to be set to 0.

The Operational/Questionable Status Event Summary Register (OSESR/QSESR) summarizes the status of every module slot of your instrument. If, for any slot, any bit of the QSSER goes from 0 → 1 AND the corresponding bit of the QSSEM is 1 at the same time, the QSESR bit representing that slot is set to 1.

The Operational/Questionable Status Enable Summary Mask (OSESM/QSESM) allows you to choose the module slots that may affect the OSB/QSB of the Status Byte. If any bit of the QSESR goes from 0 → 1 AND the corresponding bit of the QSESM is 1 at the same time, the QSB of the Status Byte is set to 1. If you set a bit of the OSESM/QSESM to zero, the corresponding module slot cannot affect the OSB/QSB. The default is for all the bits of the OSESM/QSESM to be set to 0.

The Operational/Questionable Status Enable Summary Mask for the Agilent 8163A/B Lightwave Multimeter and the Agilent 8164A/B Lightwave Measurement System consists of one level. These are described in “Status System for 8163A/B & 8164A/B” on page 35.

As the Agilent 8166A/B Lightwave Multichannel System has 17 module slots, the Operational/Questionable Status Enable Summary Mask consists of two levels. This is described in “Status System for 8166A/B” on page 36.

34

Agilent 8163A/B, 8164A/B & 8166A/B Mainframes, Fifth Edition

Page 34
Image 34
Agilent Technologies 8163A, B, 8166A, 8164A manual Status Model

8163A, 8164A, 8166A, B specifications

Agilent Technologies B,86100A is a high-performance oscilloscope and signal integrity analyzer designed primarily for advanced digital communications applications. As a versatile tool, it supports a wide range of testing needs, making it indispensable for engineers and researchers involved in the development and testing of high-speed digital signals.

One of the standout features of the B,86100A is its capability to analyze signals with various bandwidths, accommodating both current and emerging communication standards. The device features a sampling rate of up to 80 GS/s and bandwidth capabilities of 33 GHz to ensure high accuracy in capturing fast signal transitions, which is critical for ensuring the integrity of complex digital signals.

The B,86100A employs Agilent's proprietary digital signal processing (DSP) technology, which significantly enhances measurement precision and reduces noise, enabling users to obtain clearer insights into signal behavior. Its advanced triggering capabilities allow for precise signal capture, making it particularly useful in troubleshooting and validating high-speed designs, as well as in evaluating the performance of optical and electrical devices.

In addition to its high-speed capabilities, the B,86100A offers a robust set of measurement tools including jitter analysis, eye diagram analysis, and equalization assessment. These features allow engineers to effectively analyze signal quality and address potential issues related to signaling distortions and inter-symbol interference.

The graphical user interface of the B,86100A is intuitive, enabling users to efficiently navigate through measurement options and visualize data results. Customizable measurement setups streamline workflow, ensuring that users can quickly adapt their tests to evolving project requirements.

Another key characteristic of the B,86100A is its modularity. The system supports a variety of plug-in modules, which can be tailored to specific application needs, such as different types of optical and electrical signals. This flexibility not only extends the operational capability of the instrument but also makes it a future-proof investment as technology continues to evolve.

In summary, Agilent Technologies B,86100A combines high-speed acquisition with advanced processing capabilities, making it an essential instrument for anyone involved in high-speed digital design and testing. With its ability to deliver precise measurements and extensive analysis features, it empowers engineers to achieve optimal performance and reliability in their systems.