C. Control Board Check

Before replacing CB that does not show a visible defect and that you suspect is bad, always conduct the following check procedure. This procedure will help you verify your diagnosis.

Alarm Reset: If CB is in alarm (beeping), press the "ALARM RESET" button on CB while CB is beeping. WARNING! Risk of electric shock. Care should be taken not to touch live terminals. Once reset, the icemaker starts at the 1-minute fill cycle. For audible alarm information, see "III.B. LED Lights and Audible Alarm Safeties."

1)Check the dip switch settings to assure that S4 dip switch 3, 4, 7, 8, 9, 10 and S5 dip switch 1 through 5 ("G" CB) are in the factory default position. S4 dip switch 1, 2, 5, 6 are cleaning adjustments and the settings are flexible. For factory default settings, see

"III.C.1. Default Dip Switch Settings."

2)Move the control switch to the "ICE" position. If the red "POWER OK" LED is on, control voltage is good, continue to step 3. If the "POWER OK" LED is off, check CT secondary circuit. CT output is 10.5VAC at 115VAC primary input. If the secondary circuit has proper voltage and the red LED is off, replace CB.

If the secondary circuit does not have proper voltage, check CT primary circuit. Check for 115VAC at CB K1 connector pin #10 (BR) to neutral (W) for 115VAC. Always choose a white (W) neutral wire to establish a good neutral connection when checking voltages. For additional checks, see "II.G.1. No Ice Production."

3)The "OUTPUT TEST" button provides a relay sequence test. Make sure the control switch is in the "ICE" position, then press the "OUTPUT TEST" button. For the correct lighting sequence, see the table below. Note that the order of the LEDs from the outer edge of the control board is 1, 4, 3, 2. Components (e.g., compressor) cycle during the test.

Control

Correct LED

Board

Lighting Sequence

 

 

"E"

2, 3, 4, 1

 

 

"G"

1, 4, 3, 2

 

 

Following the test, the icemaker begins operation at the 1-minute fill cycle for both "E" and "G" control boards. If the LEDs do not light as described above, replace CB.

4)To verify voltage output from CB to the components, slide the CB K1 connector out far enough to allow multimeter lead contact. With the icemaker in the cycle to be tested, check output voltage from the corresponding pin on CB K1 connector to a neutral (W wire). If output voltage is not found and the appropriate LED is on, replace CB.

Legend: CB–control board; CT–control transformer

31

Page 31
Image 31
Hoshizaki KM-1301SAH/3, SRH/3 KM-2100SWH3, SWH/3 Control Board Check, Control Correct LED Board Lighting Sequence

SRH/3 KM-1900SAH/3, SRH3 KM-2500SWH3, SRH3 KMH-2000SWH/3, SWH/3, KM-1301SAH/3 specifications

The Hoshizaki KM-1301SRH/3, KM-1301SWH/3, and KM-1301SAH/3 are advanced ice makers designed for commercial use, addressing a wide variety of needs in restaurants, hotels, and bars. These models are known for their efficiency, durability, and innovative technologies that ensure the production of high-quality ice.

One of the standout features of these units is their ability to produce a high volume of ice, reaching up to 1,300 pounds per day, which is crucial for establishments with heavy ice demands. The machines utilize advanced cooling technology, allowing for faster ice production and minimizing the time required to refill ice bins. This makes them ideal for busy settings where speed and efficiency are paramount.

The KM-1301 series employs a unique stainless steel exterior that not only ensures longevity and resistance to corrosion but also enhances the aesthetic appeal of any commercial kitchen or bar. The interior is designed for easy cleaning, helping to maintain hygiene standards vital for food safety.

These ice makers utilize the proprietary Hoshizaki Cubelet Ice system, producing small, chewy ice cubes that are perfect for various beverages and food displays. The advanced design of the ice-making mechanism ensures that ice is formed quickly and efficiently, reducing energy consumption. Additionally, Hoshizaki’s CycleSaver technology optimizes the production process by reducing the amount of water used, making these machines environmentally friendly.

Another characteristic is their self-diagnostic capability, which allows for real-time monitoring of unit performance and quicker troubleshooting, minimizing downtime. The built-in alerts notify operators of any issues or maintenance needs, ensuring that the ice-making process remains uninterrupted.

The KM-1301 series also provides user-friendly controls that allow easy adjustments and monitoring of ice production settings. This flexibility enables businesses to meet varying ice demands based on seasonality or special events.

In summary, the Hoshizaki KM-1301SRH/3, KM-1301SWH/3, and KM-1301SAH/3 ice makers are exemplary choices for commercial ice production. With their high output, durable design, energy efficiency, innovative technologies, and user-friendly features, they cater effectively to the rigorous demands of the foodservice industry while maintaining a commitment to quality and sustainability.