The result of an operation is always an integer (any fractional portion is truncated).

Whereas conversions change only the display of the number but not the actual number in the X–register, arithmetic does alter the number in the X–register.

If the result of an operation cannot be represented in valid bits, the display shows  and then shows the largest positive or negative number possible.

Example:

Here are some examples of arithmetic in Hexadecimal, Octal, and Binary modes:

12F16 + E9A16 = ?

Keys:Display:

()

￿()  ()

77608 – 43268 =?

Description:

Sets base 16; HEX

annunciator on. Result.

()

￿ () ()

￿()

()





1008 ÷ 58=?



Sets base 8; OCT annunciator on. Converts displayed number to octal. Result.

Integer part of result.

 

 

 

5A016 + 10011002 =?

￿(



)

 Sets base 16; HEX

 

annunciator on.



 

()

Base Conversions and Arithmetic and Logic 11-5

Page 163
Image 163
HP 35s Scientific manual    ,    , , 