Technical Data:
Item Number 750-
Number of inputs
Voltage supply
Sensor types
Cold junction compensation
Measuring accuracy
Resolution
Isolation DC/DC
Input current (internal)
Bit width per channel
Configuration
Operating temperature
Connection technique
Dimensions (mm)WxHxL
Presetting
462, 469
2 (differential input, max. +/- 3.5V)
via system voltage
J, K, B, E, N, R, S, T, U, L, mV Messung
on each module
<25 µV, typ. 15 µV
0.1°C per Bit
500V system / power supply
65 mA max.
16 Bit: data; 8 Bit: control/status* (detection of broken wire
none, optional via software parameter
0°C....+55°C
CAGE CLAMP; 0.08 to 2.5mm2
12 x 64* x 100 (*from upper edge of the carrier rail)
The function module
The function module
Warning: Both inputs are referenced to a common potential (not isolated)!
The linearization is provided over the complete range by a microprocessor. The temperature ranges of the sensors are represented with a resolution of 1 bit per 0.1°C in one word (16 Bit). Thus, 0°C corresponds to the value 0000, and 25.5°C correspond to the value 0 x 00FF. Temperatures below 0°C are represented in two’s complement with a leading ‘1’.
Within the whole range of all thermocouples, the function module works like a ‘μV meter’. The voltage resolution is represented with 16 bits. A processor converts the voltage value into a numerical value proportional to the measured temperature of the selected type of thermocouple.
In order to compensate the offset voltage at the clamping point, a cold junction thermocouple compensation calculation is carried out. The circuit contains a temperature measuring sensor at the ‘CAGE CLAMP’ connection and considers the temperature offset voltage when calculating the measured value.
Inputfor thermocouple modules | 2 |