3.20 Miscellaneous Configuration Register

The miscellaneous configuration register provides miscellaneous PCI-related configuration. See Table 3±17 for a complete description of the register contents.

Bit

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name

 

 

 

 

 

 

Miscellaneous configuration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Default

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bit

15

14

13

12

11

10

9

 

8

 

7

 

6

5

 

4

 

3

2

1

 

0

Name

 

 

 

 

 

 

 

 

 

Miscellaneous configuration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type

R/W

R

R/W

R

 

 

R

R/W

R

 

R

 

R

 

R

R

 

R/W

 

R/W

R/W

R/W

R/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Default

0

0

1

0

0

1

 

0

 

0

 

0

 

0

0

 

0

 

0

0

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Register:

Miscellaneous configuration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type:

 

Read/Write, Read-only

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Offset:

F0h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Default:

0000 2400h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3±17. Miscellaneous Configuration Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIT

FIELD NAME

TYPE

 

 

 

 

 

 

 

 

 

 

 

DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31±16

 

RSVD

 

R

 

 

Reserved. Bits 31±16 return 0s when read.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

support from D3cold. This bit is used to program bit 15 (PME_D3COLD) in the power

15

PME_D3COLD

R/W

 

 

PCI_PME

 

 

management capabilities register (offset 46h, see Section 3.17).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

RSVD

 

R

 

 

Reserved. Bit 14 returns 0 when read.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

support. This bit is used to program bit 13 (PME_SUPPORT_D2) in the power

 

 

 

 

 

 

 

PCI_PME

13

PME_SUPPORT_D2

R/W

 

 

management capabilities register (offset 46h, see Section 3.17). If wake from the D2 power state

 

 

implemented in the TSB12LV26 is not desired, then this bit may be cleared to indicate to power

 

 

 

 

 

 

 

 

 

 

 

 

 

 

management software that wake-up from D2 is not supported.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12±11

 

RSVD

 

R

 

 

Reserved. Bits 12±11 return 0s when read.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2 support. This bit is used to program bit 10 (D2_SUPPORT) in the power management

10

D2_SUPPORT

R/W

 

 

capabilities register (offset 46h, see Section 3.17). If the D2 power state implemented in the

 

 

TSB12LV26 is not desired, then this bit may be cleared to indicate to power management software

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that D2 is not supported.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9±5

 

RSVD

 

R

 

 

Reserved. Bits 9±5 return 0s when read.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This bit defaults to 0, which provides OHCI-Lynx compatible target abort signaling. When this bit is

 

 

 

 

 

 

 

set to 1, it enables the no-target-abort mode, in which the TSB12LV26 returns indeterminate data

 

 

 

 

 

 

 

instead of signaling target abort.

 

 

 

 

 

 

 

 

 

 

 

 

4

DIS_TGT_ABT

R/W

 

 

The link is divided into the PCI_CLK and SCLK domains. If software tries to access registers in the

 

 

link that are not active because the SCLK is disabled, a target abort is issued by the link. On some

 

 

 

 

 

 

 

 

 

 

 

 

 

 

systems this can cause a problem resulting in a fatal system error. Enabling this bit allows the link

 

 

 

 

 

 

 

to respond to these types of requests by returning FFh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is recommended that this bit be set to 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

GP2IIC

 

R/W

 

 

When this bit is set to 1, the GPIO3 and GPIO2 signals are internally routed to the SCL and SDA,

 

 

 

 

respectively. The GPIO3 and GPIO2 terminals are also placed in a high impedance state.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

DISABLE_SCLKGATE

R/W

 

 

When this bit is set to 1, the internal SCLK runs identically with the chip input. This bit is a test

 

 

feature only and should be cleared to 0 (all applications).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

DISABLE_PCIGATE

R/W

 

 

When this bit is set, the internal PCI clock runs identically with the chip input. This bit is a test

 

 

feature only and should be cleared to 0 (all applications).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When this bit is set to 1, the PCI clock is always kept running through the

 

 

protocol.

0

KEEP_PCLK

R/W

 

 

PCI_CLKRUN

 

 

When this bit is cleared, the PCI clock may be stopped using PCI_CLKRUN.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3±14

Page 34
Image 34
Texas Instruments TSB12LV26 manual Miscellaneous Configuration Register, Miscellaneous configuration

TSB12LV26 specifications

The Texas Instruments TSB12LV26 is a high-performance, low-voltage transceiver designed for Serial Bus applications. It is widely recognized for its robust features and versatility, making it a popular choice among engineers and designers in various industries. One of the primary features of the TSB12LV26 is its support for high-speed data transmission, enabling it to operate at speeds up to 400 Mbps. This capability is essential for applications that demand rapid data transfer, such as in multimedia and communication systems.

The TSB12LV26 is part of the IEEE 1394 standard, also known as FireWire, which is widely used for connecting devices like digital cameras, external hard drives, and printers. The chip operates within a voltage range of 2.7V to 3.6V, making it suitable for low-power applications where energy efficiency is critical. The integration of advanced Low-Voltage Differential Signaling (LVDS) technology within the TSB12LV26 enhances signal integrity and reduces electromagnetic interference, resulting in more reliable performance over longer distances.

In terms of its physical characteristics, the TSB12LV26 is available in a compact 48-pin HTQFP package, which is beneficial for space-constrained designs. The device features a comprehensive set of input and output pins, allowing for flexible connectivity options. Additionally, the TSB12LV26 includes advanced power management features, including low-power modes that help extend battery life in portable devices.

Another significant advantage of the TSB12LV26 is its capability for peer-to-peer communication, enabling devices to connect and communicate directly without the need for a central controller. This functionality supports a wide range of device configurations and simplifies system architecture. Furthermore, the transceiver offers built-in support for asynchronous and isochronous data transfer, making it adaptable for various application requirements.

The TSB12LV26 also adheres to stringent EMI and ESD protection standards, ensuring reliable operation in challenging environments. With a rich feature set, excellent performance characteristics, and compliance with industry standards, the Texas Instruments TSB12LV26 remains an ideal choice for engineers looking to implement high-speed and reliable communication in their designs. Overall, it represents a significant advancement in the field of data transmission technology, making it a preferred component for numerous electronic applications.