Application Considerations

Chiller system size affects design and control considerations. Each size comes with its own set of advantages and challenges.

Small Chilled-Water Systems (1-2 chillers)

Figure 17. Small chilled-water system schematic

Pump

Air-Cooled Chiller

Control

Load

Valve

 

A common design goal for the small chilled-water system with one or two chillers (Figure 17) is to minimize complexity while balancing energy consumption goals. Smaller chilled-water systems may have smaller budgets allotted for operation and maintenance and may run unattended more often than larger systems. Keeping it simple, while capitalizing on chilled water advantages, is the hallmark of a successful project.

The first cost of a small system is a common hurdle faced by a building owner. There are ways to minimize first costs without sacrificing operating costs. For example, a wider design ΔT reduces flow rates, which in turn reduces pipe and pump sizes. In addition to reducing pump and pricing costs, this may also allow the designer to avoid installing a storage tank to meet the required chiller “loop times.” (See “Amount of Fluid in the Loop” on page 79.) On a system with multiple chillers, using a variable-primary-flow design (“Variable-Primary-Flow Systems” on page 55) can reduce the number of pumps, starters, electrical equipment, and space required.

18

Chiller System Design and Control

SYS-APM001-EN

Page 24
Image 24
Trane SYS-APM001-EN manual Application Considerations, Small Chilled-Water Systems 1-2 chillers

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.